Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm n ∈ N để
a) \(\dfrac{2n^4-3n^2+n-2}{n-1}\) ∈ N (n≠1)
b) \(\dfrac{-3n^3+2n^2-n-2}{n+2}\) ∈ Z (n≠-2)
a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)
hay \(n\in\left\{0;2;3\right\}\)
Tra loi
Bn len google tra cho nhanh
Mk ns tht day
Hok tot Hien
Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1
=> 2n chia hết cho 8
=> n chia hết cho 4
=> n chẵn
=> 3n chẵn
=> 3n+1 lẻ
=> 3n+1 chia 8 dư 1
=> 3n chia hết cho 8
=> n chia hết cho 8 (1)
Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4
=> 3n chia 5 dư 4;3 hoặc chia hết cho 5
=> n chia 5 dư 3;1 hoặc chia hết cho 5
- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)
- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)
- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)
=> n chia hết cho 5 (2)
Từ (1) và (2) suy ra n chia hết cho 40
Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương
P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài
Đặt 2n +1 =a2
3n +4 =b2
2b2 -3a2 =6n +8 -6n -3 =5
2(b2 -a2) = a2 +5 => a2 là số chính phưng lẻ < 200 ( 2n +1 < 200)
+a2 =25 => a =5 => n =12 khi đó 3.12 +4 =40 =b2 loại
+a2 = 49 => n =24 => 24.3 +4 =76 =b2 loại
+a2 =81 => n =40 => 40.3 +4 =124 =b2 loại
+a2 =121 => n =60 => 60.3 +4 =184 = b2 loại
+a2 =169 => n =84 => 84.3 +4 =256 =162 =b2 => b =16 (TM)
Vậy n =84
đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))
\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)
số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)
giờ cần chứng minh \(n⋮8\)
từ cách đặt ta cũng suy ra \(n=b^2-a^2\)
vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)
do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)
từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)
Vì n là số tự nhiên có 2 chữ số thì \(10\le n\le99\)
=>\(21\le2n+1\le199\)
Vì 2n+1 là số chính phương
=>2n+1=(16;25;36;499;64;81;100;121;169)
n=(12;24;40;60;84)
=>3n+1=(37;73;121;181;253)
Mà 3n+1 là số chính phương
=>3n+1=121
=>n=40