Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d = ƯC(n + 3; 2n + 5)
=> n + 3 chia hết cho d ; 2n + 5 chia hết cho d
=> 2(n+3) - (2n + 5) chia hết cho d
=> 2n + 6 - 2n - 5 chia hết cho d => 1 chia hết cho d => d = 1
Vậy......
b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy...
bài làm
1)Gọi a = ƯC(n + 3; 2n + 5)
=> n + 3 chia hết cho a ; 2n + 5 chia hết cho a
=> 2(n+3) - (2n + 5) chia hết cho a
=> 2n + 6 - 2n - 5 chia hết cho a => 1 chia hết cho a => a= 1
Vậy...................
2) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4
=> 4 không thể là ước chung của 2n + 5 và n + 1
Vậy........................
hok tốt
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17 ⇔ n - 9 ⋮ 17 ⇔ n = 17k + 9 (k ∈N).
Nếu n = 17k + 9 thì 2n - 1 ⋮ 17, và 9n + 4 = 9(17k + 9) + 4 = bội 17 + 85 ⋮ 17, do đó (2n - 1, 9n + 4) = 17.
Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó (2n - 1, 9n + 4) = 1.
Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)
=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d
=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> (18n + 8) - (18n - 9) chia hết cho d
=> 18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d
=> d thuộc {1 ; 17}
+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17
=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17
=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17
=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17
Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17
=> n = 17.k + 9 (k thuộc N)
Vậy với n = 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17
Với n khác 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1
Gọi UCLN(3n+2,2n+1) = d
=> 2.(3n+1) = 3n + 2 chia hết cho d
=> 6n + 4 chia hết cho d
=> 2n + 1 chia hết cho d
=> 3(2n+1) = 6n + 3 chia hết cho d
Mà UCLN(6n+4,6n+3) = 1
Vậy UCLN(2n+2,2n+1) = 1
Gọi ƯCLN(3n+2; 2n+1) là d. Ta có:
3n+2 chia hết cho d => 6n+4 chia hết cho d
2n+1 chia hết cho d => 6n+3 chia hết cho d
=> 6n+4-(6n+3) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(3n+2; 2n+1) = 1
a) Đặt UCLN(2n + 1 ; 3n + 1) = d
2n + 1 chia hết cho d => 6n + 3 chia hết cho d
3n + 1 chia hết cho d => 6n + 2 chia hết cho d
UCLN(6n + 3 ; 6n + 2 ) = 1
Do đó d = 1; Vậy UCLN(2n + 1 ; 3n + 1) = 1
1.
a) thuoc N* vay UCLN(ab) = 56
UC(a;b) ={ 1,2,4,7,8,..;56}
UCLN= 56=> a: ( 224 + 56 ) : 2 = 140 ; b= 224 - 140 = 84
a= 224;b=84
Gọi ƯCLN(A; B) = d
=> A ; B chia hết cho d
=> m + n chia hết cho d và B = m2 + n2 chia hết cho d
m + n chia hết cho d => m(m+ n) chia hết cho d => m2 + mn chia hết cho d
=> (m2 + mn) - (m2 + n2) chia hết cho d => n(m - n) chia hết cho d
Nhận xét: n và m - n nguyên tố cùng nhau vì
Gọi ƯCLN(n;m - n) = d' => n ; m - n chia hết cho d' => n; m chia hết cho d' => d' là ước chung của m; n
Mà theo bài cho ƯCLN(m; n) = 1 nên d' = 1
Vậy n; m - n nguyên tố cùng nhau
Ta có n(m - n) chia hết cho d => n chia hết cho d hoặc m - n chia hết cho d
+) Trường hợp: n chia hết cho d : Ta có m + n chia hết cho d nên m chia hết cho d => d là ước chung của m ; n mà ƯCLN(m; n) = 1
=> d = 1
+) Trường hợp: m - n chia hết cho d: Ta có m + n chia hết cho d => (m - n) + (m + n) chia hết cho d => 2m chia hết cho d
- Khi m lẻ => 2 chia hết cho d hoặc m chia hết cho d
Nếu 2 chia hết cho d mà d lớn nhất => d = 2
Nếu m chia hết cho d , theo trường hợp trên => n chia hết cho d => d = 1
- Khi m chẵn, vì m; n nguyên tố cùng nhau nên n lẻ . Lại có 2n chia hết cho d => 2 chia hết cho d hoặc n chia hết cho d
Quay lại trường hợp như trên => d = 2 hoặc 1
Vậy d = 1 hoặc d = 2
Gọi ƯCLN(2n+1;n(n+1))=d
Ta có: 2n+1 chia hết cho d; n(n+1) chia hết cho d =>vì n chia hết cho d nên n+1 chia hết cho d
=>2n+1-(n+1) chia hết cho d
=>n+1 chia hết cho d
Vì n chia hết cho d nên 1 chia hết cho d hay d=1
=>ƯCLN(2n+1;n(n+1))=1
cách giải mk ko chắc chắn mấy nhưng đáp án thì chắc chắn đúng