Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d
⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d
⇒d=1 hoặc d= 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17
Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-2;2;-4\right\}\)
Gọi d =(2n-1; 9n+4) => 2n-1 ; 9n+4 chia hết cho d
=> 2(9n+4) -9(2n-1) = 18n +8 - 18n +9 =17 chia hết ho d
=> d =1 hoặc d =17
Nếu 1 trong 2 số 2n-1; 9n+4 chia hết cho 17 thì UCLN(2n-1;9n+4) =17
Nếu 1 trong 2 số 2n-1; 9n+4 không chia hết cho 17 thì UCLN(2n-1; 9n+4) =1
Gọi d =(2n-1; 9n+4) => 2n-1 ; 9n+4 chia hết cho d
=> 2(9n+4) -9(2n-1) = 18n +8 - 18n +9 =17 chia hết ho d
=> d =1 hoặc d =17
Nếu 1 trong 2 số 2n-1; 9n+4 chia hết cho 17 thì UCLN(2n-1;9n+4) =17
Nếu 1 trong 2 số 2n-1; 9n+4 không chia hết cho 17 thì UCLN(2n-1; 9n+4) =1
7 - 2n ⋮ 2n + 1
<=> 7 - 2n - 1 + 1 ⋮ 2n + 1
<=> 7 + 1 - (2n + 1) ⋮ 2n + 1
<=> 8 - (2n + 1) ⋮ 2n + 1
=> 8 ⋮ 2n + 1 Hay 2n + 1 là ước của 8
=> Ư(8) = { ± 1; ± 2; ± 4; ± 8 }
Mà 2n + 1 là số lẻ => 2n + 1 = { ± 1 }
Ta có : 2n + 1 = - 1 <=> 2n = - 2 => n = - 1 (TM)
2n + 1 = 1 <=> 2n = 0 => n = 0 (TM)
Vậy n = { - 1; 0 }
Đặt d=ƯCLN (2n-1;9n+4) (d thuộc N*)
Khi đó: 2n-1 chia hết cho d và 9n+4 chia hết cho d
=>18n-9 chia hết cho d và 18n +8 cha hết cho d
=>18n+8-(18n-9) chia hết cho d
=>17 chia hết cho d mà d lớn nhất ; d thuộc N*
=>d=17
=>ƯCLN (2n-1;9n+4) =17
Vậy ƯCLN (2n-1;9n+4) =17