Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x+2\ne0\Rightarrow x\ne-2\)
b/ \(x+4\ge0\Rightarrow x\ge-4\)
c/ \(x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`
Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`
2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`
`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`
3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.
Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?
ĐKXĐ:
a. \(sinx.cosx\ne0\Leftrightarrow sin2x\ne0\)
\(\Rightarrow2x\ne k\pi\Rightarrow x\ne\frac{k\pi}{2}\)
b. ĐKXĐ: \(3-sinx\ge0\Rightarrow sinx\le3\) (luôn đúng)
TXĐ của hàm số là R
c. ĐKXĐ: \(\left\{{}\begin{matrix}\frac{sin^2x}{1+sinx}>0\\1+sinx\ne0\end{matrix}\right.\)
\(\Rightarrow sinx\ne-1\Rightarrow x\ne-\frac{\pi}{2}+k2\pi\)
d. \(cos\left(2x-\frac{\pi}{4}\right)\ne0\Leftrightarrow2x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\frac{3\pi}{8}+\frac{k\pi}{2}\)
Lời giải:
1. TXĐ: $x\in\mathbb{R}$
2. TXĐ: $x\in\mathbb{R}$
3.
ĐKXĐ: \(\left\{\begin{matrix} \cos x+1\neq 0\\ \frac{\sin x+2}{\cos x+1}\geq 0\end{matrix}\right.\Leftrightarrow \cos x\neq -1\)
\(x\neq \pi (2k+1)\) với $k$ nguyên.
Vậy TXĐ là \(x\in\mathbb{R}|\frac{x-\pi}{2\pi}\not\in\mathbb{Z}\)
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).
Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)
b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\)
Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\)
a. \(y'=3sin^2x.\left(sinx\right)'=3sin^2x.cosx\)
b. \(y'=3cos^2x.\left(cosx\right)'=-3cos^2x.sinx\)
c. \(y'=cosx.cos^2x+2cosx.\left(-sinx\right).sinx=cos^3x-2cosx.sin^2x\)
d. \(y=x^{\dfrac{1}{3}}+\left(x+1\right)^{\dfrac{2}{3}}\Rightarrow y'=\dfrac{1}{3}x^{-\dfrac{2}{3}}+\dfrac{2}{3}\left(x+1\right)^{-\dfrac{1}{3}}=\dfrac{1}{3\sqrt[3]{x^2}}+\dfrac{2}{3\sqrt[3]{x+1}}\)
do hàm \(\cos x,\sin x\)luôn xđ trên R nên:
a) Y xđ \(\Leftrightarrow\frac{x+1}{x+2}xđ\Leftrightarrow x\ne-2\)\(\Rightarrow D=R\backslash\left\{-2\right\}\)
b) y xđ\(\Leftrightarrow x+4\ge0\Leftrightarrow x\ge-4\Rightarrow D=[-4,+\infty)\)
c) Y xđ \(\Leftrightarrow x^2-3x+2\ge0\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le1\end{cases}\Rightarrow}D=(-\infty,1]U[2,+\infty)\)