K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 4 2021

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Gọi tiếp tuyến d qua A có dạng: \(y=k\left(x-m\right)+1\)

d là tiếp tuyến của (C) khi hệ sau có nghiệm: \(\left\{{}\begin{matrix}\dfrac{2-x}{x-1}=k\left(x-m\right)+1\\\dfrac{-1}{\left(x-1\right)^2}=k\end{matrix}\right.\)

\(\Rightarrow\dfrac{2-x}{x-1}=\dfrac{m-x}{\left(x-1\right)^2}+1\)

\(\Leftrightarrow-x^2+3x-2=m+x^2-3x+1\)

\(\Leftrightarrow-2x^2+6x-3=m\) (1)

Để từ A kẻ được đúng 1 tiếp tuyến \(\Rightarrow\) (1) có đúng 1 nghiệm thỏa mãn \(x\ne1\)

TH1: (1) có 1 nghiệm bằng 1 và 1 nghiệm khác 1 \(\Rightarrow m=1\)

TH2: đường thẳng \(y=m\) cắt \(y=-2x^2+6x-3\) tại đúng 1 điểm

\(\Rightarrow m=\dfrac{3}{2}\)

NV
15 tháng 4 2021

\(y'=\dfrac{3}{\left(x+1\right)^2}\Rightarrow\) phương trình tiếp tuyến tại \(M\left(m;\dfrac{m-2}{m+1}\right)\) có dạng:

\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{m-2}{m+1}\)

\(\Leftrightarrow3x-\left(m+1\right)^2y+m^2-4m-2=0\)

\(P=d\left(I;d\right)=\dfrac{\left|6m+6\right|}{\sqrt{9+\left(m+1\right)^4}}=\dfrac{6}{\sqrt{\left(m+1\right)^2+\dfrac{9}{\left(m+1\right)^2}}}\le\dfrac{6}{\sqrt{2\sqrt{\dfrac{9\left(m+1\right)^2}{\left(m+1\right)^2}}}}=\sqrt{6}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(m+1\right)^2=\dfrac{9}{\left(m+1\right)^2}\Leftrightarrow\left(m+1\right)^2=3\Rightarrow m=\) ... lại xấu :)

NV
23 tháng 4 2022

\(y'=4x^3-4mx\Rightarrow y'\left(1\right)=4-4m\)

\(A\left(1;1-m\right)\)

Phương trình tiếp tuyến d tại A có dạng:

\(y=\left(4-4m\right)\left(x-1\right)+1-m\)

\(\Leftrightarrow\left(4-4m\right)x-y+3m-3=0\)

\(d\left(B;d\right)=\dfrac{\left|\dfrac{3}{4}\left(4-4m\right)-1+3m-3\right|}{\sqrt{\left(4-4m\right)^2+1}}=\dfrac{1}{\sqrt{\left(4-4m\right)^2+1}}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(4-4m=0\Rightarrow m=1\)

29 tháng 5 2022

y′=4x3−4mx⇒y′(1)=4−4my′=4x3−4mx⇒y′(1)=4−4m

A(1;1−m)A(1;1−m)

Phương trình tiếp tuyến d tại A có dạng:

y=(4−4m)(x−1)+1−my=(4−4m)(x−1)+1−m

⇔(4−4m)x−y+3m−3=0⇔(4−4m)x−y+3m−3=0

d(B;d)=∣∣∣34(4−4m)−1+3m−3∣∣∣√(4−4m)2+1=1√(4−4m)2+1≤1d(B;d)=|34(4−4m)−1+3m−3|(4−4m)2+1=1(4−4m)2+1≤1

Dấu "=" xảy ra khi và chỉ khi 4−4m=0⇒m=1

20 tháng 1 2017

Chọn D.

 

NV
10 tháng 1 2021

Tiếp tuyến có hệ số góc bằng 1

\(y'=\dfrac{m\left(3m+1\right)-\left(-m^2+m\right)}{\left(x+m\right)^2}=\dfrac{4m^2}{\left(x+m\right)^2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\dfrac{4m^2}{\left(x+m\right)^2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\left[{}\begin{matrix}2m=x+m\\-2m=x+m\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\left[{}\begin{matrix}x=m\\x=-3m\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\dfrac{m^2-m}{3m+1}\\-3m=\dfrac{m^2-m}{3m+1}\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
19 tháng 4 2021

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Gọi phương trình đường thẳng d qua A có dạng: \(y=k\left(x-a\right)+1\)

d tiếp xúc (C) khi và chỉ khi hệ sau có nghiệm:

\(\left\{{}\begin{matrix}\dfrac{-x+2}{x-1}=k\left(x-a\right)+1\\\dfrac{-1}{\left(x-1\right)^2}=k\end{matrix}\right.\)

\(\Rightarrow\dfrac{-x+2}{x-1}=\dfrac{-\left(x-a\right)}{\left(x-1\right)^2}+1\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=x-a-\left(x-1\right)^2\)

\(\Leftrightarrow2x^2-6x+3=-a\) (1)

Để có đúng 1 tiếp tuyến qua A khi (1) có đúng 1 nghiệm

\(\Rightarrow y=-a\) tiếp xúc \(y=2x^2-6x+3\)

\(\Leftrightarrow-a=-\dfrac{3}{2}\Rightarrow a=\dfrac{3}{2}\)

NV
15 tháng 4 2021

\(y'=1+\dfrac{1}{x^2}\) , gọi \(M\left(m;m-\dfrac{1}{m}\right)\)

Tiếp tuyến d tại M: \(y=\left(1+\dfrac{1}{m^2}\right)\left(x-m\right)+m-\dfrac{1}{m}\)

\(\Leftrightarrow\left(1+\dfrac{1}{m^2}\right)x-y-\dfrac{2}{m}=0\)

\(d\left(O;d\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{\left|\dfrac{2}{m}\right|}{\sqrt{\left(1+\dfrac{1}{m^2}\right)^2+1}}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{16}{m^2}=\left(1+\dfrac{1}{m^2}\right)^2+1\Leftrightarrow16t=\left(1+t\right)^2+1\) (với \(t=\dfrac{1}{m^2}\))

\(\Leftrightarrow t^2-14t+2=0\)

Sao đề cho nghiệm xấu vậy ta?

23 tháng 4 2022

Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có : 

 PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\) 

K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)  

\(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\)   \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)

" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

Suy ra : y = -x hoặc y = -x + 4 

NV
23 tháng 4 2022

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử \(x_0\) là hoành độ tiếp điểm

Phương trình tiếp tuyến d:

\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)

\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)

\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)

Dấu "=" xảy ra khi:

\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)

11 tháng 4 2021

\(x_0=1\Rightarrow y_0=1-m\)

\(y'=\dfrac{\left(mx-1\right)'\left(x-2\right)+\left(mx-1\right)\left(x-2\right)'}{\left(x-2\right)^2}=\dfrac{mx-2m+mx-1}{\left(x-2\right)^2}\)

\(\Rightarrow y'\left(1\right)=m-2m+m-1=-1\)

\(\Rightarrow pttt:y=-1\left(x-1\right)+1-m\)

\(A\left(1;-2\right)\in pttt\Rightarrow-1\left(1-1\right)+1-m=-2\Leftrightarrow m=3\)

11 tháng 4 2021

đạo hàm (u/v)'=(u'v-u.v')/u^2 chứ ạ !!