K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

Gọi M( x; y) là giao điểm của đường thẳng (d) và đường thẳng y= 2

Khi đó; tọa độ điểm M là nghiệm hệ phương trình:

Vậy M( - 3; 2)

Chọn B.

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

28 tháng 12 2019

+Ta có suy ra đường thẳng AB nhận làm vtpt, có phương trình là

1(x-1) +1( y-2) = 0 hay x+ y – 3= 0

+Ta có suy ra đường thẳng CD nhận làm vtpt, có phương trình là

0 .(x-2) + 1.(y-2) =0 hay y- 2= 0

+Tọa độ giao điểm là nghiệm của hệ phương trình 


Chọn A

12 tháng 12 2023

a: 

loading...

b: Phương trình hoành độ giao điểm là:

-2x+5=x+2

=>-2x-x=2-5

=>-3x=-3

=>x=1

Thay x=1 vào y=x+2, ta được;

y=1+2=3

Vậy: A(1;3)

c: Sửa đề: Tính góc tạo bởi đường thẳng y=x+2 với trục Ox

Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+2 với trục Ox

y=x+2 nên a=1

=>\(tan\alpha=a=1\)

=>\(\alpha=45^0\)

d: Vì (d)//y=-3x-1 nên \(\left\{{}\begin{matrix}a=-3\\b\ne-1\end{matrix}\right.\)

Vậy: (d): y=-3x+b

Thay x=1 và y=3 vào (d), ta được:

\(b-3\cdot1=3\)

=>b-3=3

=>b=6(nhận)

Vậy: (d): y=-3x+6

17 tháng 10 2018

Đáp án D

+ Đường thẳng AB có vectơ chỉ phương là A B → ( - 1 ; 2 )   đường thẳng CD có vectơ chỉ phương là C D → ( - 2 ;   4 ) .   .

+ Ta  thấy A B   → v à   C D →  cùng phương nên AB CD không có giao điểm.

4 tháng 2 2017

Gọi M( x; y) là giao điểm của 2 đường thẳng (a) và (b) ( nếu có).

Khi đó; tọa độ điểm M là nghiệm hệ phương trình:

Vậy tọa độ giao điểm của 2 đường thẳng đã cho là : M( 1; -1)

Chọn C.