Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tọa độ giao điểm của đồ thị hàm số y=-2x+1 với trục Ox là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-2x+1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=-1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của đồ thị hàm số y=-2x+1 với trục Oy là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Tọa độ giao điểm của đồ thị hàm số \(y=4x\) và y=\(\frac{1}{x}\) là các giá trị x\(\in\) \(Z\) sao cho:
\(4x=\frac{1}{x}\)
\(4x^2=1\)
\(x^2=\frac{1}{4}\)
\(x=\) \(\pm\) \(\sqrt{\frac{1}{2}}\)
\(\implies\) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\) \(\implies\) \(\orbr{\begin{cases}y=4.\frac{1}{2}=2\\y=4.\left(-\frac{1}{2}\right)=-2\end{cases}}\)
\(\implies\) Đồ thị hàm số \(y=4x\) cắt đồ thị hàm số \(y=\frac{1}{x}\) tại \(2\) giao điểm \(\left(\frac{1}{2};2\right),\left(-\frac{1}{2};-2\right)\)
Tọa độ giao điểm của hai đồ thị phải thỏa mãn đồng thời cả hai hàm số
tức là \(\hept{\begin{cases}y=4x\\y=\frac{1}{x}\end{cases}}\)Suy ra \(4x=\frac{1}{x}\Rightarrow4x^2=1\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)
Với \(x=\frac{1}{2}\Rightarrow y=\frac{1}{2}.4=2\)
Với \(x=\frac{-1}{2}\Rightarrow y=\frac{-1}{2}.4=-2\)
Vậy hai đồ thị có hai giao điểm là \(M\left(\frac{1}{2};2\right)\)và \(N\left(\frac{-1}{2};-2\right)\)
Chúc các em học tốt!
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{4}{x}=3x-1\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2-x-4=0\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3x-4\right)\left(x+1\right)=0\\y=3x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{\dfrac{4}{3};-1\right\}\\y\in\left\{3;-4\right\}\end{matrix}\right.\)
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-3x+1=\dfrac{4}{x}\\y=\dfrac{4}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x^2+x-4=0\\y=\dfrac{4}{x}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)