K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016
Giả sử có số nguyên dương n sao cho n+26=Xvà n-11=Y3với X,Y là 2 số nguyên dương (X>Y)

khi đó ta được:x3-y3=37 <=>(x-y)(x2+xy+y2)=37.

ta thấy 0<x-y,x2+xy+y2, nên ta có:\(\begin{cases}x-y=1\left(1\right)\\x^2+xy+y^2=37\left(2\right)\end{cases}\) Thay x=y+1 từ (1) vào (2) ta được y2-y-12=0, từ đó y=3 và n=38vậy n=38 là giá trị cần tìm
25 tháng 5 2023

 Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.

AH
Akai Haruma
Giáo viên
20 tháng 10 2021

Lời giải:
Giả sử $n$ có ước nguyên tố khác 2. Gọi ước đó là $p$ với $p$ lẻ.

Khi đó: $n=pt$ với $t$ nguyên dương bất kỳ.

$a^n+1=(a^t)^p+1\vdots a^t+1$

Mà $a^t+1\geq 3$ với mọi $a\geq 2; t\geq 1$ và $a^n+1> a^t+1$ nên $a^n+1$ là hợp số. Điều này vô lý theo giả thiết.

Vậy điều giả sử là sai, tức là $n$ không có ước nguyên tố lẻ nào cả. Vậy $n=2^k$ với $k\in\mathbb{N}$

Lấy $a=2; n=4$ ta có $a^n+1=17$ là snt. Vậy $n=2^k$ với $k$ nguyên dương.

NM
19 tháng 8 2021

vì \(2^n-1\) là số nguyên tố nên tổng các ước của \(2^n-1\) là \(1+2^n-1\)

tổng các ước của \(2^{n-1}\left(2^n-1\right)\) là \(\displaystyle\Sigma ^{n-1}_{i=0}(2^i)\times (1+2^n-1)\)\(=\left(2^n-1\right)\times2^n=2\left[2^{n-1}\left(2^n-1\right)\right]\)

Vậy số đã cho là số hoàn hảo

\(\left(x+2\right)^n=C^0_n\cdot x^n+C^1_n\cdot x^{n-1}\cdot2+...+C^n_n\cdot2^n\)(1)

Tổng các hệ số trong khai triển (1) là;

(1+2)^n=3^n

=>3^n=243

=>n=5