K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì vế phải luôn là số chẵn nên vế trái là số chẵn 

mà 7 là số lẻ

=> 2x là số lẻ

=> x=0

lúc đó |y-11|+y-11=8

TH1   y<11

lúc đó 11-y+11-y=8<=> 22-2y=8 <=> y=12 (KTM)

TH2          y\(\ge\)11

lúc đó y-11+y-11=8

<=> 2y-22=8 <=> y=15 (t/m)

Vậy x=0,y=15

(2x-y+7)^2022>=0 với mọi x,y

|x-3|^2023>=0 với mọi x,y

Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y

mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)

=>2x-y+7=0 và x-3=0

=>x=3 và y=2x+7=2*3+7=13

3 tháng 4 2018

\(\left|y-5\right|=4^x-y+12\)

\(\Rightarrow\orbr{\begin{cases}y-5=4^x-y+12\\y-5=-\left(4^x-y+12\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y-5=4^x-y+12\\y-5=-4^x+y-12\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y-\left(4^x-y\right)=12+5\\y-\left(-4^x+y\right)=-12+5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y-4^x+y=17\\y+4^x-y=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\left(y+y\right)-4^x=17\\\left(y-y\right)+4^x=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2y-4^x=17\\4^x=-7\end{cases}}\)

\(2y-4^x=17\Rightarrow y=\frac{17-4^x}{2}\left(x\in N\right)\)

\(2y-4^x\)=> 0 tồn tại

3 tháng 4 2018

y − 5 = 4x − y + 12 y − 5 = −4x + y − 12

⇒ y − 4x − y = 12 + 5 y − − 4 x + y = − 1 2 + 5

⇒ y − 4 x + y = 1 7 y + 4 x − y = − 7 ⇒ y + y − 4 x = 1 7 y − y + 4 x = − 7 ⇒ 2y − 4 x = 1 7 4 x = − 7 2y − 4 x = 1 7 ⇒y = 2 1 7 − 4 x x ∈ N 2y − 4 x => 0 tồn tại 

3 tháng 11 2019

Ta thấy \(x,x+1\) luôn có 1 số chăn và 1 số lẻ

Do đó  \(x^{20},\left(x+1\right)^{11}\) cũng luôn có 1 số chẵn và 1 số lẻ 

\(\Rightarrow2016^y=x^{20}+\left(x+1\right)^{11}\) lẻ

Điều này xảy ra khi \(y=0\) , còn nếu \(y\ge1\) thì \(2016^y\) luôn chẵn ( mâu thuẫn )
Vậy y = 0 

\(\Rightarrow x^{20}+\left(x+1\right)^{11}=2016^o=1\)

Nếu \(x=0\) thì đễ thấy thỏa mãn

Nếu   \(x\ge1\) thì \(x^{20}+\left(x+1\right)^{11}>1\) ( vô lý )

Vậy \(\left(x,y\right)=\left(0,0\right)\)
 

  

3 tháng 11 2019

Vế trái là tổng 2 số chẵn lẻ nên luôn là số lẻ \(\Rightarrow\) vế phải lẻ

\(\Rightarrow y=0\)

\(\Rightarrow x^{20}+\left(x+1\right)^{11}=1\Rightarrow x=0\)

Vậy \(\left(x;y\right)=\left(0;0\right)\)

14 tháng 4 2019

HELP ME