K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

Điều kiện để phương trình có nghĩa là 

\(\begin{cases}y-1\ge0\\x-1\ge\\x,y\in Z\end{cases}y}\) \(\Leftrightarrow\) \(\begin{cases}y\ge1\\x\ge\\x,y\in Z\end{cases}y+1}\)

Từ \(\frac{A_{x-1}^y}{C_{x-1}^y}\)\(\frac{60}{10}\) \(\Leftrightarrow\) \(\frac{P_yC_{x-1}^y}{C_{x-1}^y}\) = 6

\(\Leftrightarrow\) \(P_y\) = 6 \(\Leftrightarrow\) y! = 3! \(\Leftrightarrow\) y=3

Thay lại vào phương trình ta có 

\(\frac{A_x^2}{A_{x-1}^3}\) = \(\frac{21}{60}\) \(\Leftrightarrow\) \(\frac{x!\left(x-4\right)!}{\left(x-2\right)!\left(x-1\right)!}\) = \(\frac{7}{20}\) \(\Leftrightarrow\) \(\frac{x}{\left(x-3\right)\left(x-2\right)}\) = \(\frac{7}{20}\)

\(\Leftrightarrow\) 20x = 7(x2-5x+6)

\(\Leftrightarrow\) 7x2 - 55x + 42 = 0

\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=7\\x=\frac{6}{7}\end{array}\right.\) loại do (x\(\ge\)4, x\(\in\)N)

10 tháng 9 2023

Để tính giá trị của biểu thức S, chúng ta có thể sử dụng công thức khai triển nhị thức Newton. Công thức này cho phép chúng ta tính toán các hệ số a0, a1, a2,..., a11 trong biểu thức (1+x+x^2+...+x^10)^11.

Công thức khai triển nhị thức Newton: (a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1b^(n-1) + C(n,n)a^0b^n

Trong đó, C(n,k) là tổ hợp chập k của n (n choose k), được tính bằng công thức C(n,k) = n! / (k!*(n-k)!).

Áp dụng công thức khai triển nhị thức Newton vào biểu thức (1+x+x^2+...+x^10)^11, ta có:

S = C(11,0)*a0 - C(11,1)*a1 + C(11,2)*a2 - C(11,3)*a3 + ... + C(11,10)*a10 - C(11,11)*a11

Bây giờ, để tính giá trị của S, chúng ta cần tính các hệ số a0, a1, a2,..., a11. Để làm điều này, chúng ta có thể sử dụng công thức C(n,k) để tính các hệ số từng phần tử trong biểu thức (1+x+x^2+...+x^10)^11.

Tuy nhiên, để viết bài giải ngắn nhất có thể, ta có thể sử dụng một số tính chất của tổ hợp chập để rút gọn công thức. Chẳng hạn, ta có các quy tắc sau:

C(n,k) = C(n,n-k) (đối xứng)C(n,0) = C(n,n) = 1C(n,1) = C(n,n-1) = n

Áp dụng các quy tắc trên vào công thức của S, ta có:

S = a0 - 11a1 + 55a2 - 165a3 + ... + 330a10 - a11

Với công thức trên, ta chỉ cần tính 11 hệ số a0, a1, a2,..., a10, a11 và thực hiện các phép tính nhân và cộng trừ để tính giá trị của S.

NV
23 tháng 4 2021

\(y'=x^2-2x+m\)

\(y'\ge0\) ; \(\forall x\in\left(1;3\right)\Leftrightarrow x^2-2x+m\ge0\) ;\(\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m\ge\max\limits_{\left(1;3\right)}\left(-x^2+2x\right)\)

Xét hàm \(f\left(x\right)=-x^2+2x\) trên \(\left(1;3\right)\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(3\right)=-3\)

\(\Rightarrow m\ge1\)

18 tháng 1 2023

Vì `x+1;x+2y;3y+3` là `1` CSC `=>2x+4y=x+1+3y+3<=>x=4-y`   `(1)`

Vì `x+1;y+1;3y-1` là `1` CSN `=>(y+1)^2=(x+1)(3y-1)`    `(2)`

Từ `(1);(2)=>y^2+2y+1=(4-y+1)(3y-1)`

      `<=>y^2+2y+1=-3y^2+y+15y-5`

      `<=>[(y=3),(y=1/2):}`

  `=>[(x=1),(x=7/2):}`

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

\(y'=\frac{2}{3}x+m\geq 0, \forall x\in\mathbb{R}\Leftrightarrow m\geq -\frac{2}{3}x, \forall x\in\mathbb{R}\)

\(\Leftrightarrow m\geq \max (\frac{-2}{3}x), \forall x\in\mathbb{R}\)

Vì $\frac{-2}{3}x$ không có max với mọi $x\in\mathbb{R}$ nên không tồn tại $m$

23 tháng 4 2021

a/ \(y'=3mx^2-2\left(m+1\right)x+3m\)

Xet m=0 ko thoa man

Xet m khac 0

\(y'\ge0\Leftrightarrow\left(m+1\right)^2-9m^2\le0\Leftrightarrow8m^2-2m-1\ge0\)

\(\Leftrightarrow m^2+8\le0\left(vl\right)\) => ko ton tai m thoa man

b/ \(y'=mx^2-2mx+2m-1\)

m=0 ko thoa man

Xet m khac 0

\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\left(2m-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-m\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\ge1\)

 

23 tháng 4 2021

Để anh Lâm giải quyết nốt nhé, toi phải chạy deadline đây :(

22 tháng 3 2021

\(y=\dfrac{x+z}{2}\)

\(\left(y-4\right)^2=xz\)

\(\left(y-4\right)=\dfrac{x+z-9}{2}\)

3 pt 3 ẩn, kiên trì chút chắc giải được á :D

9 tháng 10 2018

NV
17 tháng 5 2021

\(y'=-3x^2-12x=-3\left(x+2\right)^2+12\le12\)

\(\Rightarrow\) tiếp tuyến có hệ số góc \(k=12\) tại điểm có hoành độ \(x=-2\)

\(f\left(-2\right)=-15\)

Phương trình tiếp tuyến:

\(y=12\left(x+2\right)-15\Leftrightarrow y=12x+9\)

\(\Rightarrow a-b=12-9=3\)