K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

Giả sử \(A=n^2+4n+11\) là số chính phương

đặt \(n^2+4n+11=k^2>0\)

      \(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)

Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)

Ta có bảng:

n-k+2-1-7
n+k+271
n1-5(loại)
k44

Vậy n=1

 

24 tháng 11 2017

giúp mk vs mk kick cho nhieu ma

24 tháng 11 2017

Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu

Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc

15 tháng 2 2021

Ta có :

A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n

A = 1! + 2! + 3! + 4! + ... + n!

Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5)  nên tổng của chúng cũng tận cùng là 0.

\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0) 

A = (......3) + (.....0)

A = (......3)

Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)

19 tháng 2 2018

ai trả lời đc mk cho 3

có hội nha

bài tập tết của mk đó

nl mk sắp phải nộp rồi

20 tháng 2 2018

bài nào ấy nhỉ