Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(A=n^2+4n+11\) là số chính phương
đặt \(n^2+4n+11=k^2>0\)
\(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)
Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)
Ta có bảng:
n-k+2 | -1 | -7 |
n+k+2 | 7 | 1 |
n | 1 | -5(loại) |
k | 4 | 4 |
Vậy n=1
Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu
Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc
Ta có :
A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n
A = 1! + 2! + 3! + 4! + ... + n!
Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5) nên tổng của chúng cũng tận cùng là 0.
\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0)
A = (......3) + (.....0)
A = (......3)
Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)
ai trả lời đc mk cho 3
có hội nha
bài tập tết của mk đó
nl mk sắp phải nộp rồi