K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

n^2+n+6=k^2

4n^2+4n+24=4k^2

(2n+1)^2-(2k)^2=-23

(2n+1-2k)(2n+1+2k)=-23

Đến đây bạn tự giải tiếp nhé

6 tháng 3 2017

bạn có câu tl chưa....mình cx k làm đúng 

mình tìm đc -6;-1;5

11 tháng 3 2017

bạn ơi chỉ có -6 và 5 thui còn -1 không phải nha bạn

31 tháng 1 2021

Xét n=0n=0 không thỏa mãn.

Xét n1n≥1

Với nNn∈N thì:A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2A=n4+2n3+2n2+n+7=(n2+n)2+n2+n+7>(n2+n)2

Mặt khác, xét :

A(n2+n+2)2=3n23n+3<0A−(n2+n+2)2=−3n2−3n+3<0 với mọi n1n≥1

A<(n2+n+2)2⇔A<(n2+n+2)2

Như vậy (n2+n)2<A<(n2+n+2)2(n2+n)2<A<(n2+n+2)2, suy ra để $A$ là số chính phương thì

A=(n2+n+1)2n4+2n3+2n2+n+7=(n2+n+1)2A=(n2+n+1)2⇔n4+2n3+2n2+n+7=(n2+n+1)2

n2n+6=0(n2)(n+3)=0⇔−n2−n+6=0⇔(n−2)(n+3)=0

Suy ra n=2

14 tháng 6 2021

số đó là 1

31 tháng 8 2015

Nếu \(n=0\to n^{1997}+n^{1975}+1=1\) không phải là số nguyên tố.

Xét  \(n\) là số nguyên dương. Ta có  \(n^{1997}-n^2=n^2\left(n^{3\times665}-1\right)\vdots\left(n^3\right)^{665}-1\vdots n^3-1\vdots n^2+n+1.\) 

Suy ra \(n^{1997}-n^2\vdots n^2+n+1.\)  
Tương tự, \(n^{1975}-n=n\left(n^{3\times658}-1\right)\vdots\left(n^3\right)^{658}-1\vdots n^3-1\vdots n^2+n+1.\)
Từ đó ta suy ra \(n^{1997}+n^{1975}+1=\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)+\left(n^2+n+1\right)\vdots n^2+n+1.\)
Vì \(n^{1997}+n^{1975}+1\)  là số nguyên tố (chỉ có hai ước dương là 1 và chính nó) và \(n^2+n+1>1\), nên \(n^{1997}+n^{1975}+1=n^2+n+1.\) Suy ra \(\left(n^{1997}-n^2\right)+\left(n^{1975}-n\right)=0.\) Do \(n\)là số nguyên dương nên \(\left(n^{1997}-n^2\right)\ge0,\left(n^{1975}-n\right)\ge0.\) Vậy \(n=1.\)


Thử lại với \(n=1\to n^{1997}+n^{1975}+1=3\) là số nguyên tố. 

Đáp số \(n=1.\)

30 tháng 8 2020

dạng này đc gọi là dạng j thế câuk

24 tháng 6 2020

Vì   \(7^n+147\) là số chính phương 

=> Đặt: \(7^n+147\)  với a là số nguyên khi đó ta có: 

\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương

mà: n là số tự nhiên  nên \(7^n⋮7\)\(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)

=> \(7^n⋮7^2\)=> n \(\ge\)2

+) Với n = 2k khi đó: \(k\ge1\)

Ta có: \(7^{2k}+147=a^2\)

<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)

Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)

Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2 

Thử lại thỏa mãn

+) Với n = 2k + 1  ta có: 

\(7^{2k+1}:4\) dư -1

\(147\): 4 dư  3

=> \(7^{2k+1}+147\) chia 4 dư 2 

mà số chính phương chia 4 bằng 0 hoặc 1 

=> Loại 

Vậy: n = 2

NGUUYỄN NGỌC MINH viết sai đề rồi

23 tháng 5 2016

đồng ý cả hai tay

2 tháng 12 2017

mình cũng không biết

27 tháng 4 2019

Ta có \(n^4-3n^2+1=\left(n^4-2n^2+1\right)-n^2\)

                                        \(=\left(n^2-1\right)^2-n^2\)

                                        =(n^2-n-1)(n^2+n-1)

   Để B là số nguyên tố thì 

  n^2-n-1=1,n^2+n-1 là số nguyên tố 

=>n=2 thỏa mãn

Vậy n=2