Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 273 : 32 = (33)3 : 32
= 39 : 32
= 37
b) (3/5)15 : (9/25)5 = (3/5)15 : [(3/5)2]5
= (3/5)15 : (3/5)10
= (3/5)2
\(\left|15-a\right|+\left(b-18\right)^2\le0\)
Ta có:
\(\left|15-a\right|\ge0\)
\(\left(b-18\right)^2\ge0\)
Trường hợp này xảy ra khi:
\(\left\{\begin{matrix}\left|15-a\right|=0\\\left(b-18\right)^2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=15\\b=18\end{matrix}\right.\)
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
a) Giả sử A,B,C cùng nhận giá trị âm => A.B.C nhận giá trị âm
Mà ta có: A.B.C = \(\left(-\frac{2}{3}x^2yz^2\right).\left(xy^2z^2\right)\left(-\frac{3}{5}x^3y^3\right)\)
= \(\left[-\frac{2}{3}\cdot\left(-\frac{3}{5}\right)\right]\left(x^2.x.x^3\right)\left(y.y^2.y^3\right).\left(z^2.z^2\right)\)
= \(\frac{2}{5}x^6y^6z^4\)nhận giá trị dương => điều giả sử là sai
=> A, V, C không thể cùng nhận giá trị âm
b) Ta có: |2x - 4| \(\ge\)0 \(\forall\)x
(y + 3)20 \(\ge\)0 \(\forall\)y
=> -12 - |2x - 4| - (y + 3)20 \(\le\)-12 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-4=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
Vậy MaxM = -12 khi x = 2 và y = -3
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
Chúc bạn học tốt!!!
a)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^{x+1}=16\)
\(\Rightarrow2^{x+1}=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
b)
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)
\(\Rightarrow-3^x=-3^7\)
=> x=7
c)
\(8^n:2^n=4\)
\(\Rightarrow2^{3n}:2^n=4\)
\(\Rightarrow2^{3n-n}=4\)
\(\Rightarrow2^{2n}=2^2\)
=>2n=2
=>n=1
a)\(\frac{16}{2^n}=2\)
=>16:2n=2
=>2n=16:2
=>2n=8
b)ko nhớ cách làm
c)8n:2n=4
=>(23)n:2n=22
=>23n:2n=22
=>23n-n=22
=>22n=22
=>2n=2
=>n=1
dc rùi chứ
bài 2:
Gọi phân số cần tìm là \(\frac{7}{x}\)(x≠0)
Ta có: \(-\frac{9}{10}< \frac{7}{x}< -\frac{9}{11}\)
\(\Leftrightarrow\frac{63}{-70}< \frac{63}{9x}< \frac{63}{-77}\)
\(\Leftrightarrow-77< 9x< -70\)
Vì 9x là bội của 9 và trong dãy số nguyên từ -77 tới -70 chỉ có số -72 là bội của 9 nên 9x=-72
hay x=-8
Vậy: phân số cần tìm là \(\frac{7}{-8}\)
Bài 3:
A=|x+1|+5
Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\Rightarrow\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy: Giá trị nhỏ nhất của đa thức A=|x+1|+5 là 5 khi x=-1
b) Ta có: \(B=\frac{x^2+15}{x^2+3}\)
\(=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{x^2+3}\le\frac{1}{3}\forall x\)
\(\Rightarrow\frac{12}{x+3}\le4\forall x\)
\(\Rightarrow1+\frac{12}{x+3}\le5\forall x\)
Dấu '=' xảy ra khi
\(\frac{12}{x+3}=4\Leftrightarrow x+3=\frac{12}{4}=3\)\(\Leftrightarrow x=3-3=0\)
Vậy: giá trị lớn nhất của biểu thức \(B=\frac{x^2+15}{x^2+3}\) là 5 khi x=0
1) |x|=x+2
=> \(\left[{}\begin{matrix}x=x+2\\x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(voli\right)\\2x=-2\Rightarrow x=-1\end{matrix}\right.\)
vậy x=-1
c;b tương tự
2) \(\left|x-\dfrac{3}{2}\right|=\left|\dfrac{5}{2}-x\right|\)
=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{5}{2}-x\\x-\dfrac{3}{2}=x-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\Rightarrow x=2\\0=-1\left(voli\right)\end{matrix}\right.\)
vậy x=2
Bấm vào câu hỏi tương tự :
Đề bài hơi khác một chút : | b - 45 | ( cách làm tương tự )
Chúc học tốt !!!
NHận xét:
- Với \(x\ge0\Rightarrow\left|x\right|+x=2x\)
- Với \(x< 0\Rightarrow\left|x\right|+x=0\)
=> |x| + x luôn chẵn với mọi x thuộc Z
Áp dụng nhận xét trên thì |b - 15| + b - 15 là số chẵn với b - 15 thuộc Z
=> 2a + 37 chẵn => 2a lẻ <=> a = 0
Khi đó |b - 15| + b - 15 = 38
- Nếu b < 15, ta có: -(b - 15) + b - 15 = 38 <=> 0 = 38 (loại)
- Nếu b \(\ge\) 15, ta có: b - 15 + b - 15 = 38 <=> 2b - 30 = 38 <=> b = 34 (thỏa mãn)
Vậy a = 0, b = 34