K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2

Đặt \(p^n+8=k^3\left(k\inℕ,k\ge3\right)\)

\(\Leftrightarrow k^3-8=p^n\)

\(\Leftrightarrow\left(k-2\right)\left(k^2+2k+4\right)=p^n\)

\(\Leftrightarrow k-2=p^i\left(i\inℕ,i\le n\right)\)

\(\Leftrightarrow k=p^i+2\)

Ta có \(p^n+8=k^3\)

\(\Leftrightarrow p^n+8=\left(p^i+2\right)^3\)

\(\Leftrightarrow p^n=p^{3i}+6p^{2i}+12p^i\) (*)

Đặt \(p^j=\dfrac{p^n}{p^i}\left(j\inℕ,j\le n\right)\), khi đó (*) thành 

\(p^j=p^{2i}+6p^{2i}+12\) (**)

Xét \(i=0\Leftrightarrow p^j=19\Leftrightarrow\left(p,j\right)=\left(19,1\right)\) \(\Rightarrow n=1\)

Ta tìm được một bộ \(\left(p,n\right)=\left(17,1\right)\)

Nếu \(j=0\) thì vô lí. Xét \(i,j\ge1\) . Khi đó ta có \(12⋮p\) \(\Rightarrow p\in\left\{2,3\right\}\)

Với \(p=2\), ta có \(2^n+8=k^3\) \(\Rightarrow k⋮2\Rightarrow k=2l\left(l\inℕ\right)\)

\(\Rightarrow2^n+8=8l^3\Leftrightarrow2^{n-3}+1=l^3\) \(\left(n\ge3\right)\)

\(\Leftrightarrow\left(l-1\right)\left(l^2+l+1\right)=2^{n-3}\)

\(\Leftrightarrow l-1=2^m\left(m\le n-3\right)\)

\(\Leftrightarrow l=2^m+1\)

Do đó \(2^{n-3}+1=\left(2^m+1\right)^3\) 

\(\Leftrightarrow2^{n-3}=2^{3m}+3.2^{2m}+3.2^m\)

\(\Leftrightarrow2^{n-3-m}=2^{2m}+3.2^m+3\)

\(\Rightarrow3⋮2^{n-3-m}\) \(\Leftrightarrow n-3-m=0\) \(\Leftrightarrow m=n-3\)

\(\Leftrightarrow l^2+l+1=1\) \(\Leftrightarrow l=0\) \(\Leftrightarrow k=0\), vô lí.

Với \(p=3\), ta có \(3^n+8=k^3\) \(\Rightarrow k\) chia 3 dư 2 \(\Rightarrow k=3q+2\left(q\inℕ^∗\right)\)

\(\Rightarrow3^n+8=\left(3q+2\right)^3\)

\(\Leftrightarrow3^n=27q^3+54q^2+36q\)

\(\Leftrightarrow3^{n-2}=q\left(3q^2+6q+4\right)\) \(\left(n\ge2\right)\)

 Dễ thấy nếu \(n=2\) thì vô lí. Xét \(n\ge3\). Khi đó vì \(3q^2+6q+4⋮̸3\) nên \(3q^2+6q+4=1\), vô lí.

Vậy \(\left(p,n\right)=\left(19,1\right)\) là cặp số duy nhất thỏa mãn ycbt.

 

9 tháng 9 2020

Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương

\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)

\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:

\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.

Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)

\(\Rightarrow3y^2+3y+1=2n+5\)

Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:

\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)

Vì nguyên dương nên nhận y=2--->n=7

14 tháng 8 2020

Đặt:    \(5p+1=a^3;a\inℕ^∗\)

=>     \(5p=a^3-1\)

<=>   \(5p=\left(a-1\right)\left(a^2+a+1\right)\)

<=>    \(a-1;a^2+a+1\)   đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)

Do:   \(a\inℕ^∗\)    =>   \(a-1< a^2+a+1\)    Do: p là SNT  =>  \(1< 5p\)

=> Ta thực tế chỉ phải xét 3 trường hợp:

TH1:    \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)

=>    \(a=2\)  

=>    \(5p=2^2+2+1=4+2+1=7\)

=>    \(p=\frac{7}{5}\)     => Loại do p là SNT.

TH2:   \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)

=>    \(a=6\)

=>    \(p=6^2+6+1=43\)

THỬ LẠI:     \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)

TH3:    \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)

=>    \(a^2+a=4\)

=>   Thử \(a=1;a=2\)đều loại. Và \(a>2\)  thì  \(a^2+a>4\)     (LOẠI)

a = 0 cũng loại do a thuộc N*.

Vậy duy nhất có nghiệm      \(p=43\)    là thỏa mãn điều kiện.

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

DD
6 tháng 8 2021

\(n+13=a^2,n+33=b^2,\left(b>a\ge0;a,b\inℤ\right)\).

\(b^2-a^2=n+33-\left(n+13\right)=20\)

\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=20\)

Có \(a,b\)là số nguyên nên \(b+a,b-a\)là các ước của \(20\)mà lại có \(\left(b+a\right)+\left(b-a\right)=2b\)là số chẵn nên \(b+a,b-a\)cùng tính chẵn lẻ, do đó ta chỉ có trường hợp: 

\(\hept{\begin{cases}b+a=10\\b-a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=6\end{cases}}\)

suy ra \(n=3\).

NM
6 tháng 8 2021

ta giả sử;

\(\hept{\begin{cases}a^2=n+13\\b^2=n+33\end{cases}\Rightarrow b^2-a^2=20}\) ha y \(\left(b-a\right)\left(b+a\right)=20\Rightarrow\orbr{\begin{cases}b-a=1\\b-a=2\end{cases}\text{ hoặc }b-a=4}\)

với \(\hept{\begin{cases}b-a=1\\b+a=20\end{cases}}\) hoặc \(\hept{\begin{cases}b-a=4\\b+a=5\end{cases}}\)mâu thuẫn với a,b là số tự nhiên 

với \(\hept{\begin{cases}b-a=2\\b+a=10\end{cases}\Leftrightarrow\hept{\begin{cases}b=6\\a=4\end{cases}\Rightarrow n=3}}\)

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

11 tháng 9 2021
Tui chịu Nhé Bye Bye Các bạn