Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Th1 : P = 2 => P + 10 = 12 chia hết cho 2 => P là hợp số < Loại >
Th2 : P > 2 => P sẽ có dạng là : 3k ; 3k +1 ; 3k + 2 ( k thuộc N*)
+, Với P = 3k => P = 3 ( P là SNT ) => P + 10 = 13 ; P + 14 = 17 , là SNT < TM >
+ Với P = 3k + 1 => P + 14 = 3k + 1 + 14 = 3k + 15 = 3(k+5) chia hết cho 3 => là hợp số < Loại >
+ Với P = 3k +2 => P + 10 = 3k + 2 + 10 = 3k + 12 = 3(k+4) chia hết cho 3 => là hợp số < Loại >
Vậy P = 3
b, Tương tự
a) Với p=2 => p+10=12 không là số nguyên tố (loại)
Với p=3 => p+10=13 và p+14=17 là các số nguyên tố (thỏa mãn)
p là số nguyên tố lớn hơn hoặc bằng 3
=> p có dạng 3k+1 ; 3k+2 ( k thuộc N*)
Với p=3k+1 => p+14=3k+15 chia hết cho 3 (loại)
Với p=3k+2 => p+10=3k+12 chia hết cho 3 (loại)
Vậy p=3.
a) Nếu p =2 thì p+10= 12; p+14= 16 ( loại)
Vì p là số nguyên tố nên p có dạng 3k; 3k+1; 3k+2
Nếu p =3k thì p = 3 ( vì p là số nguyên tố) khi đó: p+10 = 13; p+14=17
Nếu p=3k+2 thì p+10= 3k+2+10= 3k+12= 3( k+4) ( vì 3 chia hết cho 3 nên 3(k+4) chia hết cho 3=> p+10 là hợp số trái với đề bài)
Nếu p= 3k+1 thì = 3k+1+14= 3k+15= 3(k+5) (vì...................................................................................................................)
Vậy.......
Chỗ vì thì bn vì như dòng trên nha, còn phần b làm tương tự
a: TH1: p=3
=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)
TH2: p=3k+1
=>p+14=3k+15=3(k+5)
=>Loại
TH3: p=3k+2
4p+7=4(3k+2)+7=12k+8+7
=12k+15
=3(4k+5) chia hết cho 3
=>Loại
b: TH1: p=5
=>p+6=11; p+12=17; p+8=13; p+24=29
=>NHận
TH2: p=5k+1
=>p+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+8=5k+10=5(k+2) chia hết cho 5
=>Loại
TH4: p=5k+3
p+12=5k+15=5(k+3)
=>loại
TH5: p=5k+4
=>p+6=5k+10=5(k+2)
=>Loại
a) do p là số nguyên tố => p lớn hơn hoặc bằng 2
xét p = 2 => p + 2 = 4 (ko là số nguyên tố) ; p+10 = 12 (ko là số nguyên tố)
xét p = 3 => p + 2 = 5 (là số nguyên tố) ; p + 10 = 13 (là số nguyên tố)
=> p = 3 thỏa mãn đề bài
còn lại tương tự nhé!!
t i c k nhé!! 45436457457568658797690807805688568568567467476856845765
b) => p = 3 thỏa mãn đề bài
c) ; d) bn vẫn cứ xét bắt đầu từ 2 rồi lên là sẽ tìm ra!!
654745768765876968987070789078976958567845745745745
1. Vì p là số nguyên tố và p + 10 và p + 14 còng là số nguyên tố nên p > 2 .Mặt khỏc p có thể rơi vào một trong 3 khả năng hoặc p = 3k , p = 3k + 1, p = 3k – 1
- Với p = 3k + 1 thì
p + 14 = 3k + 15 = 3(k + 5 ) ⋮ 3
- Với p = 3k – 1 thì
p + 10 = 3k + 9 = 3 (k + 3) ⋮ 3
Vậy p = 3k . Do p là nguyên tố nên p = 3
2. Xét các trường hợp sau.
- Với p = 5 thì
p + 2 = 7
p + 6 = 11
p + 8 = 13
p + 12 = 17
p + 14 = 19
- Với p > 5 thì p = 5k +1, p = 5k + 2, p = 5k + 3, p = 5k +4
+ Nếu p= 5k +1 thì p + 14 = 5k + 15 ⋮ 5
+ Nếu p = 5k + 2 thì p + 8 = 5k + 10 ⋮ 5
+ Nếu p = 5k + 3 thì p + 12 = 5k + 15 ⋮ 5
+ Nếu p = 5k +4 thì p + 6 = 5k + 10 ⋮ 5
Suy ra nguyên tố cần Tìm là p = 5.
dat p = 3k; 3k+1;3k+2
+ neu p= 3k => p+10= 3k+10
p+14= 3k+14(c)
+ neu p= 3k+1=> p+10= 3k+11
p+14= 3k+15= 3(k+5)(l)
+ ne p= 3k+2=> p+10= 3k+12= 3(k+4)
p+14= 3k+14 (l)
=> p=3k
ma p la snt
=> p=3
p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.
p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )
Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!