K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

P=2n2-11n+12=(2n-11).n+12

Vì P là số nguyên nên UC(n;12;2n-11)=1 suy ra n=5

10 tháng 1 2016

P=2n2-11n+12=(2n-11).n+12

Vì P là số nguyên nên UC(n;12;2n-11)=1 suy ra n=5

tick nha

8 tháng 3 2020

a) Với p=2 => p+10=12 không là số nguyên tố (loại)

Với p=3 => p+10=13 và p+14=17 là các số nguyên tố  (thỏa mãn)

p là số nguyên tố lớn hơn hoặc bằng 3

=> p có dạng 3k+1 ; 3k+2  ( k thuộc N*)

Với p=3k+1 => p+14=3k+15 chia hết cho 3  (loại)

Với p=3k+2 => p+10=3k+12 chia hết cho 3  (loại)

Vậy p=3.

8 tháng 3 2020

a) Nếu p =2 thì p+10= 12; p+14= 16 ( loại)

Vì p là số nguyên tố nên p có dạng 3k; 3k+1; 3k+2

Nếu p =3k thì p = 3 ( vì p là số nguyên tố) khi đó: p+10 = 13; p+14=17 

Nếu p=3k+2 thì p+10= 3k+2+10=  3k+12= 3( k+4) ( vì 3 chia hết cho 3 nên 3(k+4) chia hết cho 3=> p+10 là hợp số trái với đề bài)

Nếu p= 3k+1 thì = 3k+1+14= 3k+15= 3(k+5) (vì...................................................................................................................)

Vậy.......

Chỗ vì thì bn vì như dòng trên nha, còn phần b làm tương tự 

7 tháng 3 2020

a, Th1 : P = 2 => P + 10 = 12 chia hết cho 2 => P là hợp số < Loại >

Th2 : P > 2 => P sẽ có dạng là : 3k ; 3k +1 ; 3k + 2 ( k thuộc N*)

+, Với P = 3k => P = 3 ( P là SNT ) => P + 10 = 13 ; P + 14 = 17 , là SNT < TM >

+ Với P = 3k + 1 => P + 14 = 3k + 1 + 14 = 3k + 15 = 3(k+5) chia hết cho 3 => là hợp số < Loại >

+ Với P = 3k +2 => P + 10 = 3k + 2 + 10 = 3k + 12 = 3(k+4) chia hết cho 3 => là hợp số < Loại >

Vậy P = 3

b, Tương tự 

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

12 tháng 7 2016

Tìm tất cả các số tự nhiên n để :

a/ n^2 +12n là số nguyên tố

b/ 3^n +6 là số nguyên tố