Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Cách 1: Tập xác định: D = R. Ta có
+) Trường hợp 1:
+) Trường hợp 2: Hàm số đồng biến trên (0; +∞) ⇔ y' = 0 có hai nghiệm x1; x2 thỏa mãn x1 < x2 ≤ 0(*)
-) Trường hợp 2.1: y’ = 0 có nghiệm x = 0 suy ra m = 0.
Nghiệm còn lại của y’ = 0 là x = 4 (không thỏa (*))
-) Trường hợp 2.2: y’ = 0 có hai nghiệm x1; x2 thỏa mãn:
Kết hợp 2 trường hợp, vậy m ≥ 12
Chọn C.
Ta có y ' = 3 cos x + 2 sin x + m
Để hàm số đồng biến trên ℝ thì y ' ≥ 0 , ∀ x ∈ ℝ
Với α là góc thỏa mãn
Vậy m ∈ ( 13 ; + ∞ ]