K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Đáp án A.

Ta có  2 x + 3 m x 2 + 1 = 2 x + 3 x 1 m + 1 x 2 ⇒ lim x → − ∞ 2 x + 3 x = lim x → − ∞ 2 x + 3 − x = − 2  

lim x → + ∞ 2 x + 3 x = lim x → + ∞ 2 x + 3 x = 2 . Từ đó, suy ra các giới hạn  lim x → − ∞ 2 x + 3 m x 2 + 1 ; lim x → + ∞ 2 x + 3 m x 2 + 1  tồn tại và hữu hạn khi và chỉ khi các giới hạn  lim x → − ∞ m + 1 x 2 ;   lim x → + ∞ m + 1 x 2  tồn tại, hữu hạn và khác không. Do  lim x → ± ∞ 1 x 2 = 0  các giới hạn vừa nêu tồn tại, hữu hạn và khác 0 khi và chỉ khi m > 0.

Chú ý và Lỗi sai

* Định nghĩa: Cho hàm số  y = f x  xác định trên  a ; + ∞ ;   − ∞ ; b ;   − ∞ ; + ∞

Nếu  lim x → + ∞ f x = y 0 lim x → − ∞ f x = y 0  thì  y = y 0  là tiệm cận ngang.

Từ định nghĩa tiệm cận ngang của đồ thị hàm số suy ra các giá trị m cần tìm là các giá trị sao cho tồn tại giới hạn của hàm số đã cho khi x tiến ra  + ∞  và khi x tiến ra  - ∞ , đồng thời hai giới hạn đó phải khác nhau.

27 tháng 4 2019

Đáp án D

Ta có  y = 2 x - m - 1 x 2 + 1 x - 1 = 2 x - x m - 1 + 1 x 2 x - 1 = 2 = x x . m - 1 + 1 x 2 1 - 1 x  

Đồ thị hàm số đã cho có hai đường TCN  ⇔ m - 1 + 1 x 2 > 0 ; ∀ x ∈ ℝ ⇔ 1 - m < 0 ⇔ m > 1 .

4 tháng 11 2018

Đáp án A.

Đồ thị hàm số không có tiệm cận đứng

8 tháng 4 2019

Chọn B

Điều kiện để đồ thị có tiệm cận: m ≠ - 3  

Tâm đối xứng I(1;-m) là giao điểm của hai đường tiệm cận.

Khi đó, I ∈ d ⇔ m = - 3  (loại). Vậy không tồn tại m thỏa mãn.

15 tháng 7 2019

Để hàm số có 2 tiệm cận ngang thì phải tồn tại lim x → ∞ y ≠ lim x → - ∞ y

Ta có 

lim x → ∞ y = lim x → ∞ 3 x + 2018 m x 2 + 5 x + 6 = lim x → ∞ y 3 + 2018 x m + 5 x + 6 x 2 = 3 m

tồn tại khi m > 0

lim x → - ∞ y = lim x → - ∞ 3 x + 2018 m x 2 + 5 x + 6 = lim x → - ∞ y 3 + 2018 x m + 5 x + 6 x 2 = - 3 m

tồn tại khi .

Khi đó hiển nhiên lim x → ∞ y ≠ lim x → - ∞ y . Vậy m > 0

Đáp án D

5 tháng 1 2020

Ta có  đồ thị hàm số luôn có TCN y = 1

Do đó để ycbt thỏa mãn  

Chọn C.

11 tháng 8 2019

Đáp án là D.

Đồ thị hàm số có bốn đường tiệm cận khi phương trình   m 2 x 2 + m − 1 = 0 có hai nghiệm phân biệt khác  -1 ⇔ m 2 ≠ 0 − m 2 m − 1 > 0 ⇔ m ≠ 0 m < 1 .

15 tháng 3 2019

Đáp án C

11 tháng 9 2019

Đáp án C

Ta có  y = x 2 x 2 − 2 x − m + x + 1 x 2 − 4 x − m − 1

Điều kiện đặt ra là mẫu có 2 nghiệm => Δ ' = 5 + m > 0 < = > m > − 5

6 tháng 10 2019

Đáp án A

Ta có lim x → + ∞ y = lim x → − ∞ y = 1  nên đồ thị hàm số chỉ có duy nhất đường TCN  y = 1