K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

Chọn A

 là tam thức bậc hai có ∆' = m2.

Do đó: y có cực đại cực tiểu ⇔ y’ có hai nghiệm phân biệt

 

⇔ g(x) có hai nghiệm phân biệt ⇔ ∆' > 0 ⇔ m ≠ 0. (1)

Khi đó, y’ có các nghiệm là: 1 ± m

→ tọa độ các điểm cực trị của đồ thị hàm số là

Để A và B cách đều gốc tọa độ khi và chỉ khi :

Đối chiếu với điều kiện (1), ta thấy chỉ  m = ± 1 2  thỏa mãn yêu cầu bài toán.

 

19 tháng 1 2019

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

9 tháng 8 2017

Ta có y’ = 3x2- 6mx + 3( m2-1).

Hàm số đã cho  có cực trị thì phương trình y’ =0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0   có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m   

Khi đó, điểm cực đại  A( m-1; 2-2m) và điểm cực tiểu  B( m+1; -2-2m)

Ta có 

Tổng hai giá trị này là -6.

Chọn C.

13 tháng 5 2019

+ Đạo hàm y’ =  -3x2+ 6x+ 3( m2-1) = -3( x2- 2x-m2+1).

Đặt g( x) = x2- 2x-m2+1 là tam thức bậc hai có ∆ ' = m 2 .

+ Do đó hàm số đã cho có cực đại cực tiểu khi và chỉ khi y’ =0 có hai nghiệm phân biệt hay g(x)  =0  có hai nghiệm phân biệt

  ⇔ ∆ ' > 0 ⇔ m ≠ 0 .                   (1)

+ Khi đó y’ có các nghiệm là: 1±m .

 Tọa độ các điểm cực trị của đồ thị hàm số là A( 1-m ; -2-2m3) và B( 1+m ; -2+ 2m3).

Ta có: 

O A → ( 1 - m ; - 2 - 2 m 3 ) ⇒ O A 2 = ( 1 - m ) 2 + 4 ( 1 + m 3 ) 2 . O B → ( 1 + m ; - 2 + 2 m 3 ) ⇒ O B 2 = ( 1 + m ) 2 + 4 ( 1 - m 3 ) 2 .

Để A và B cách đều gốc tọa độ khi và chỉ khi OA= O B  hay  OA2= OB2

( 1 - m ) 2 + 4 ( 1 + m 3 ) 2 = ( 1 + m ) 2 + 4 ( 1 - m 3 ) 2 ⇔ - 4 m + 16 m 3 = 0

Đối chiếu với điều kiện (1), ta thấy chỉ m = ± 1 2   thỏa mãn yêu cầu bài toán.

Vậy không có giá trị nguyên nào của m thỏa mãn yêu cầu  bài toán.

Chọn  A.

5 tháng 10 2017

Chọn D

Ta có y ' = 3 x 2 - 6 m x + m - 1

Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0  có hai nghiệm phân biệt

Điều này tương đương

Hai điểm cực trị có hoành độ dương

Vậy các giá trị cần tìm của m là m >1

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm