K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2015

dùng tính chất chia hết

7 y  chia hét cho 7   ;   112 chia hết cho 7 

=> 5 x phải chia hết  cho 7  => x chia hết cho 7  => x = 7k

=>  x = 7k

      y= (112-35k)  /  7

https://olm.vn/hoi-dap/detail/28591495780.html

Tham khảo ở đây

Mình gửi cho

Học tốt!!!!!!!!!!!!!

6 tháng 1 2016

c) { x +2y +3z =20 
{3x+5y +4z =37 

{ -3x - 6y - 9z = -60 
{ 3x + 5y + 4z = 37 
Cộng lại : -y - 5z = -23 
<=> y + 5z = 23 
<=> y = 23 - 5z 

{ x +2y +3z =20 
{3x+5y +4z =37 

{ -5x - 10y - 15z = -100 
{ 6x + 10y + 8z = 74 
Cộng 
=> -x - 7z = -26 
<=> x = 26 - 7z 
<=> (26 - x)/7 = z 

=> y = 23 - 5( 26 - x )/7 

Thế : Ta tính được : 
x = 7n + 2 
y = 3 - 5n 
z = n + 4 

Vậy 3 - 5n ≥ 0 
<=> -5n ≥ -3 
<=> n ≤ 3/5 

(3 - y)/5 = n 
Vì z = n + 4 nguyên dương thì n nguyên luôn thì (3 - y)/5 chia hết 
Bắt đầu y = 3 là số nguyên nhỏ nhất 
y = 3 => n = 0 => z = 4 và x = 2 
y = 8 => n = -1 => z = 3 và x = -5 ( loại do x là nguyên âm) 

Như vậy cặp số nguyên nhỏ nhất (x ; y ; z) = (2 ; 3 ; 4)

6 tháng 1 2016

 a/ 
x= (25y + 1)/16 = y + (9y+1)/16 

Gọi k nguyên nhỏ nhất k = (9y+1)/16 

y= (16k-1)/9 = (18k-2k -1)/9 = 2k - (2k+1)/9 

Ta thấy k=4 thỏa 
=> y =7 => x=11 

b/ 41x-37y=187 
x= (187 + 37y)/41 = [(164 + 41y) + 23 -4y]/41 = 4 + y + (23-4y)/41 

Gọi k nguyên nhỏ nhất k=(23-4y)/41 
=> y = (23- 41k)/4 = (24 -40k -1-k)/4 = 6 -10k -(1+k)/4 
=> (1+ k)/4 nguyên 
=> k=-1 
=> y=16 
=> x=19

NV
7 tháng 1 2021

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

7 tháng 1 2021

Thanks nhìu :))

NV
13 tháng 1

a.

\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow\left(x-2\right)^2\le8\)

\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)

TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)

\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)

TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên

TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):

- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)

Vậy pt có các cặp nghiệm là: 

\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)

NV
13 tháng 1

b.

\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)

Lý luận tương tự câu a ta được 

\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)

Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn

Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)

- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)

- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)