Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu bằng xảy ra khi và chỉ khi :
\(\left(x^2+5x\right)^2=0\)
\(\Leftrightarrow x^2+5x=0\)
\(x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy \(P_{min}=-36\)tại \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
\(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)
\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)
\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)
Vậy \(Max_P=\frac{3}{4}\Leftrightarrow x=1\)
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
a) Đại lượng \(y\) là hàm số của đại lượng \(x\) vì với mỗi giá trị của \(x\) ta chỉ xác nhận được duy nhất một giá trị \(y\) tương ứng.
b) \(f\left( 2 \right) = {2^2} = 4;f\left( { - 3} \right) = {\left( { - 3} \right)^2} = 9\)
Ta có: \(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)
\(f\left( 0 \right) = {0^2} = 0;f\left( 1 \right) = {1^2} = 1\)
\(f\left( 2 \right) = {2^2} = 4;f\left( 3 \right) = {3^2} = 9\)
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(f\left( x \right)\) | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
\(P=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(P=\left(x^2+5x\right)^2-36\)
\(P=\left[x\left(x+5\right)\right]^2-36\)
Vậy GTNN của P = -36 khi x = 0 hoặc -5.
a) \(f\left( 1 \right) = 3.1 = 3;f\left( { - 2} \right) = 3.\left( { - 2} \right) = - 6;f\left( {\dfrac{1}{3}} \right) = 3.\dfrac{1}{3} = 1\).
b) Ta có: \(f\left( { - 3} \right) = 3.\left( { - 3} \right) = - 9;f\left( { - 1} \right) = 3.\left( { - 1} \right) = - 3\)
\(f\left( 0 \right) = 3.0 = 0;f\left( 2 \right) = 3.2 = 6;f\left( 3 \right) = 3.3 = 9\);
Ta lập được bảng sau
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(y\) | –9 | -6 | –3 | 0 | 3 | 6 | 9 |
\(y=\left|x^2+x+16\right|+\left|x^2+x-6\right|=\left|x^2+x+16\right|+\left|6-x-x^2\right|\)
\(\ge\left|x^2+x+16+6-x-x^2\right|=22\)
Dấu m"=" xảy ra <=> \(-16\le x^2+x\le6\)
<=> \(-3\le x\le2\)
Vậy giá trị nhỏ nhất của y = 22 đạt tại \(-3\le x\le2\)