Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5n+11 chia hết (n+1)
=>5n+5+6 chia hết (n+1)
=>5(n+1)+6 chia hết cho (n+1)
vì (n+1) chia hết cho (n+1)=> 5(n+1) chia hết cho (n+1)
do vậy để 5(n+1)+6 chia hết cho (n+1) thì 6 phải chia hết cho (n+1)
=> (n+1) phải là ước của 6
U(6)={-6,-3,-2,-1,1,2,3,6}
=> n={-7,-4,-3,-2,0,1,2,5}
Vì n tự nhiện=> n={0,1,2,5}
5n+11 chia hết cho n+1
Mà n+1 chia hết cho n+1
=>(5n+11)-5(n+1)
=>5n+11-(5n+5)
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)
=>n+1 thuộc{1,2,3,6}
=>n thuộc {0,1,2,5}
Công thức đặc biệt: a chia b dư 0 hoặc 1 thì an cũng chia b dư 0 hoặc 1.
a, Ta thấy 10 chia cho 9 dư 1 => 102011 chia cho 9 dư 1
Mà 8 chia cho 9 dư 8
Từ 2 điều trên => 102011 + 8 chia 9 dư 1 + 8 hay chia hết cho 9
Vậy...
b, Vì 13a5b chia hết cho 5 => b thuộc {0; 5}
+ Nếu b = 0 thì ta có:
13a50 chia hết cho 3
=> 1 + 3 + a + 5 + 0 chia hết cho 3
=> 9 + a chia hết cho 3
=> a thuộc {0; 3; 6; 9}
Vậy...
+ Nếu b = 5 thì ta có:
13a55 chia hết cho 3
=> 1 + 3 + a + 5 + 5 chia hết cho 3
=> 14 + a chia hết cho 3
=> a thuộc {1; 4; 7}
Vậy...
a, 810, 180
b, 861, 681, 168, 186
c, 860, 680, 180, 160, 810, 610
nhớ tk đấy
a ) có 4 số : 180 ; 108 ; 801 ; 810
b ) có 4 số
c ) 6 số
nha
(b = 0; a = 0); b= 0; a = 9); (b = 5; a = 4)
Vậy71415 chia hết cho 45
1. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath
Bài 1 :
Ta có : abc-cba=a.100+b.10+c-c.100-b.10-a=99(a-c)=6b3
=> b=9=> a-c=7
=> a thuộc {8;9}; c thuộc {1;2}
Vậy có 2 số thỏa mãn điều kiện : 891;912
Bài 2 :
Gọi số phải tìm là abc , với a , b , c thuộc N và 1 < hoặc = a < hoặc = 9 , 0 < hoặc = b , c < hoặc = 9.
Theo giả thiết ta có :
abc = k2k2 , k∈Nk∈N
abc = 56l , l∈Nl∈N
⇒⇒ kk2k2 = 56l = 4.14ll
⇒l=14q2⇒l=14q2 , q∈Nq∈N
Mặt khác , ta lại có 100≤561≤999⇒2≤1≤17100≤561≤999⇒2≤1≤17
Từ (1) và (2) , ta có : q = 1 ; ll= 14
Vậy số chính phương phải tìm là 784.
Tớ thấy vấn đề có vẻ mới tớ làm, tớ làm tắt, hiểu được cành tôt.
a) c={0,5}
b)\(a=\frac{b^2}{b-1}=b+1+\frac{1}{b-1}\Rightarrow\hept{\begin{cases}b=2\\a=4\end{cases}}\\ \)
425C chia hết 25=>C=0
Ta có:
ab=a+b2 <=> 10a+b=a+b2 <=> 9a=b2-b hay 9.a=b.(b-1) *
Nhận thấy b và (b-1) là 2 số tự nhiên liên tiếp nên 9 và a cũng phải là 2 số tự nhiên liên tiếp
mà: 0\(\le a,b,c\le\)9 => a=8
Thay và (*) => 9.8=b(b-1) => b=9
=> Số cần tìm có dạng: 895c . Chia hết cho 25 => c=0
Vậy số cần tìm là: 8950
a=0,1,2,3,4,5,6,7,8,9
b=0,5
Vì (3; 5) = 1 nên 7a39b : 15 <=> 7a39b : 3 và 7a39b : 5
Ta có:
* 7a39b : 5 <=> b = 0 hoặc b = 5
* 7a39b : 3 <=> (7 + a + 3 + 9 + b) : 3 <=> (7 + a + b) : 3 (*)
TH1: b = 0 => (*) <=> (7 + a) : 3 <=> a = 2; 5; 8
TH2: b = 5 => (*) <=> (12 + a) : 3 <=> a : 3 <=> a = 0; 3; 6; 9
Vậy để 7a39b : 15 thì (a; b) = (0; 5); (3; 5); (6; 5); (9; 5); (2; 0); (5; 0); (8; 0).
Chúc bạn học giỏi!!