Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Câu trả lời hay nhất: trừu tượng. nếu không nguyên
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định
đặt x+y=a=> y=a-x
thay vào pt điều kiện
2(x^2+1)+x^2=2(a-x)(x+1)
3x^2+2 =2ax+2a-2x^2-2x
5x^2+2x-2ax+2-2a=0
5x^2+2(1-a)x+2(1-a)=0
(1-a)^2-10(1-a)>=0
(1-a)(1-a-10)>=0
(a-1)(a+9)>=0
a<=-9
hoặc
a>=1
(x+y)<-9 hoặc (x+y)>=1
Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?
Bài làm
Ta có : y( x - 1 ) = x2 + 2
<=> x2 + 2 - y( x - 1 ) = 0
<=> x2 - x + x - 1 + 3 - y( x - 1 ) = 0
<=> x( x - 1 ) + ( x - 1 ) - y( x - 1 ) + 3 = 0
<=> ( x - 1 )( x - y + 1 ) = -3
Vì x, y ∈ Z => \(\hept{\begin{cases}x-1\inℤ\\x-y+1\inℤ\end{cases}}\)
Lại có \(-3=\hept{\begin{cases}-1\cdot3\\-3\cdot1\end{cases}}\)
=> Ta có bảng sau :
Tất cả các giá trị trên đều thỏa x, y ∈ Z
Vậy ( x ; y ) = { ( 2 ; 6 ) , ( 0 ; -2 ) , ( 4 ; 6 ) , ( -2 ; -2 ) }
y(x - 1) = x2 + 2
=> y(x - 1) - x2 - 2 = 0
=> y(x - 1) - x2 + 1 = 3
=> y(x - 1) - (x2 - 1) = 3
=> y(x - 1) - (x - 1)(x + 1) = 3
=> (x - 1)(y - x - 1) = 3
Ta có 3 = 1.3 = (-1).(-3)
Lập bảng xét các trường hợp
Vậy các cặp số (x;y) thỏa mãn là (2;6) ; (4;6) ; (0;-2) ; (-2;-2)