Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)
\(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2-xy+y+2=0\)
\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)
Ta có \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)-x^2=2\)
\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn
\(x^2-\left(2007+y\right)x+3+y=0\)
\(\Leftrightarrow x^2-2007x-xy+3+y=0\)
\(\Leftrightarrow x^2-x-2006x+2006-xy+y=2003\)
\(\Leftrightarrow x\left(x-1\right)-2006\left(x-1\right)-y\left(x-1\right)=2003\)
\(\Leftrightarrow\left(x-1\right)\left(x-2006-y\right)=2003\)
Do x;y là số nguyên nên x-1 là ước của 2003, 2003 là số nguyên tố nên ta có \(x-1=\left\{-2003;-1;1;2003\right\}\)
\(\Rightarrow x=\left\{-2002;0;2;2004\right\}\)
Với x=-2002 thì -2002-2006-y=-1 => y=-4007
Với x=0 thì 0-2006-y=-2003 => y=-3
Với x=2 thì 2-2006-y=2003 => y=-4007
Với x=2004 thì 2004-2006-y=1 => y=-3
Vậy các cặp số nguyên (x;y) cần tìm là (-2002;-4007);(-2;-4007);(0;-3);(2004;-3)
\(x^5+y^2=xy^2+1\)
\(\Rightarrow x^5+y^2-xy^2-1=0\)
\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)
\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)
cảm ơn bạn Nguyễn Xuân Anh nha