Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)
\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)
- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1
Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2
\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên
Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
\(x^2-3xy+2=y\)
\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)
\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)
Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)
\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)
Lập bảng:
3x+1 | 19 | 1 | -19 | -1 |
x | 6 | 0 | \(\dfrac{-20}{3}\left(l\right)\) | \(\dfrac{-2}{3}\left(l\right)\) |
Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)
Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)
Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)
Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)
Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)
Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).
Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn.
Vậy \(n=0\)hoặc \(n=1\).
Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).
Ta có : xy - 4x - 3y = 5
=> xy - 4x - 3y + 12 = 5 + 12
=> x(y - 4) - 3(y - 4) = 17
=> (x - 3)(y - 4) = 17
Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)
Khi đó ta có 17 = 1.17 = (-1).(-17)
Lập bảng xét các trường hợp
x - 3 | 1 | 17 | -1 | -17 |
y - 4 | 17 | 1 | -17 | -1 |
x | 4 | 20 | 2 | -14 |
y | 21 | 5 | -13 | 3 |
Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)
3m + 4n - mn = 16
3m + (4n - mn) = 16
3m + n(4-m) = 16
n(4-m) + 3m =16
n(4-m) + 3m -12 = 16 - 12
n(4-m) - (12-3m) = 4 (phép đảo dấu)
n(4-m) - 3(4-m) = 4
(n-3)(4-m)=4
=> (n-3;4-m) \(\in\)(1;4);(-1;-4);(2;2);(-2;-2);(4;1);(-4;-1)
=> (n;m)\(\in\)(4;0);(2;8);(5;2);(1;6);(7;3);(-1;5)