Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Có: \(x^5+y^2=xy^2+1\)
<=> \(x^5-1=y^2\left(x-1\right)\)(1)
TH1: x = 1
=> \(1^2+y^2=1.y^2+1\) đúng với mọi y
TH2: \(x\ne1\)
(1) <=> \(y^2=x^4+x^3+x^2+x+1\)
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Có:
+) \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)
\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)
=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)
+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)
=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)
<=> x = 0
=> \(y=\pm1\)
TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)
=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)
<=> \(2x+3-x^2=0\)
<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Với x = -1 => \(y=\pm1\)
Với x = 3 => \(y=\pm11\)
Kết luận:...
\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)
Tới đây giải ra các trường hợp thui