Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô
\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)
\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)
\(\Leftrightarrow x^2-y-xy+x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)
+) x = -1 suy ra y = 1
+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)
\(VP=3-\left(y^2-2y+1\right)=3-\left(y-1\right)^2\le3\)(Dấu "=" xảy ra khi \(y=1\)
Nhìn đề bài ta đoán dạng bất đẳng thức, có \(VP\le3\), giờ ta chứng minh \(VT\ge3\)
Thật vậy, ta có
\(\frac{4x^2-4x+7}{x^2+1}-3=\frac{4x^2-4x+7-3\left(x^2+1\right)}{x^2+1}=\frac{x^2-4x+4}{x^2+1}\)
\(=\frac{\left(x-2\right)^2}{x^2+1}\ge0\)
Do đó; \(\frac{4x^2-4x+7}{x^2+1}\ge3\)(dấu "=" xảy ra khi \(x=2\))
\(\Rightarrow\frac{4x^2-4x+7}{x^2+1}\ge3\ge2+2y-y^2\)
\(VT=VP\Leftrightarrow VT=3;VP=3\)
\(\Leftrightarrow x=3;y=1\)
\(\Leftrightarrow x^2y^2+22xy+141=4\left(x^2+6xy+9y^2\right)+7\left(x+3y\right)\)
\(\Leftrightarrow\left(xy+11\right)^2+20=4\left(x+3y\right)^2+7\left(x+3y\right)\)
\(\Leftrightarrow16\left(xy+11\right)^2+320=64\left(x+3y\right)^2+112\left(x+3y\right)\)
\(\Leftrightarrow\left(4xy+44\right)^2+369=\left(8x+24y+7\right)^2\)
\(\Leftrightarrow\left(8x+24y-4xy-37\right)\left(8x+24y+4xy+51\right)=369\)
Pt ước số
\(\Leftrightarrow x^2-4x+4-y^2=7\)
\(\Leftrightarrow\left(x-2\right)^2-y^2=7\)
\(\Leftrightarrow\left(x-y-2\right)\left(x+y-2\right)=7\)
Phương trình ước số cơ bản, chắc ko cần "chi tiết" hơn nữa đâu
Bạn giải nốt được ko ạ, mình chưa học phần phương tình ước số, bài này là mình đọc thêm ^^
\(\Leftrightarrow4x^4+12x^2y+9y^2=4\left(x^2+2xy+y^2\right)+5\left(x+y\right)-1\)
\(\Leftrightarrow\left(2x^2+y\right)^2=4\left(x+y\right)^2+5\left(x+1\right)-1\)
\(\Leftrightarrow\left(8x^2+4y\right)^2=64\left(x+y\right)^2+80\left(x+y\right)+25-41\)
\(\Leftrightarrow\left(8x^2+4y\right)^2=\left(8x+8y+5\right)^2-41\)
\(\Leftrightarrow\left(8x+8y+5\right)^2-\left(8x^2+4y\right)^2=41\)
\(\Leftrightarrow\left(8x+4y-8x^2+5\right)\left(8x+12y+8x^2+5\right)=41\)
Pt ước số cơ bản, bạn tự hoàn thành phần còn lại