K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

13 tháng 1 2018

Theo đề bài:a : 37 dư 1 
a : 39 dư 14 
=> a+961 chia hết cho cả 37 và 39 
Mà BCNN(37,39)=1443 
=> a=1443-961=482

13 tháng 1 2018

số đó là 482 

mình trước chờ mik xíu r mik viết cách giải!!!

14 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

vậy k =482

14 tháng 9 2015

số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên) 
39.k+14=37.k+2.k+14 chia cho 37 dư 1 
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên) 
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên ) 
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1 
2.k+14=38 
2.k=38-14=24 
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482

29 tháng 6 2016

Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:

  • a + 961 = (a - 1) + 37*26 chia hết cho 37
  • a + 961 = (a - 14) + 39*25 chia hết cho 39
  • Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.

ĐS: a = 482.

22 tháng 7 2018

Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.

Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k

37h + 1 = 39k + 14

37h – 37k = 2k + 13

37(h – k) = 2k + 13

Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ

Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1

a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất

Do đó h – k nhỏ nhất nên h – k = 1

Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482

Vậy a = 482

17 tháng 2 2018

Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.

Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k

37h + 1 = 39k + 14

37h – 37k = 2k + 13

37(h – k) = 2k + 13

Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ

Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1

a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất

Do đó h – k nhỏ nhất nên h – k = 1

Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482

Vậy a = 482