Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
1, Số đó là 3x+1=4y+3=5z+1 => 4y+2=3x=5z => 4y+2 chia hết cho 15. Số chia hết cho 15 có số tận cùng là 0 hoặc 5 nên 4y có số tận cùng là 3 hoặc 8. Số 4y chia hết cho 4 nên phải là số chẵn, do đó nó có tận cùng là 8.
Lần lượt thử các số chia hết cho 4: 8 + 2 = 10 không chia hết cho 15; 28+2=30 chia hết.
Vì vậy số đó là 31.
2,Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Bài 1 :
Gọi số tự nhiên nhỏ nhất là n
Ta có : Số 2n chia cho 3,4,5 đều dư 2.
=> 2n - 2 Chia hết cho 3,4,5
=> 2n - 2 thuộc BC(3,4,5 )
Mà n nhỏ nhất => 2n - 2 = BCNN( 3,4,5 )
Mà 4 = 22
=> BCNN( 3,4,5 ) = 22.3.5 = 60
=> 2n - 2 = 60
=> 2n = 60 + 2 = 62
=> n = 62 : 2 = 31
Vậy n = 31 là giá trị cần tìm
số chia cho 9 dư 5 có dạng 9a+5
ta có 9a+5 chia 7 dư 2a+5
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5
=>3b/10-1/2 là số nguyên
=>3b-5 chia hết cho 10
=>b=5
=>số cần tìm là 63*5/2+1/2=158
a/ GỌi số đó là A. A:5 dư 3 => A-3 chia hết cho 5 => A-3+5 chia hết cho 5 =>A+2 chia hết cho 5. A: 7 dư 4 => A-4 chia hết cho 7=> A-4+7 chia hết cho 7=> A+3 chia hết cho 7. A:9 dư 5 => A-5 chia hết cho 9 => A-5+9 chia hết cho 9 =>A+4 chia hết cho9 Có 63 chia hết cho 7 và 9 => 63*(A+2) chia hết cho 7,9 Mà A+2 chia hết cho 5 => 63*(A+2) chia hết cho 5,7,9 Có bội chung nhỏ nhất 5,7,9 là 315 => 63*(A+2) =315 =>A=3. Mình sắp học thêm, nhưng nhất định sẽ gửi con B cho bạn. Thân^^
Có y là số tự nhiên => x+4 phải chia hết x+1 Có x+1 chia hết cho x+1 => x+4-(x+1) chia hết cho x+1 => 3 chia hết cho x+1 => x+1 thuộc ước của 3 : 1;-1;3;-3 => x thuộc 2;0;-4;-2. =>y thuộc 2;4;0;-2.
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3, ta có:
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5 (1)
Giả sử a chia cho 7 được c dư 4, ta có :
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7 (2)
Giả sử a chia cho 9 được d dư 5, ta có:
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9 (3)
Từ (1), (2) và (3) ta có:
2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
=> 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Mình trình bày lại bước cuối vì nó sát nhau quá
2a - 1 chia cho 5, 7, 9
=> BCNN(5,7,9) = 5.7.9 = 315
=> 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158