Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A có GTNN
<=> 1321 : (203 - x) có GTLN
<=> 203 - x là số nguyên dương nhỏ nhất
<=> 203 - x = 1 => x = 204
A = 2016 - 1321 : 1 = 2016 - 1321 = 695 có GTNN tại x = 204
ta có: lx+3l \(\ge\) 0 với mọi x
l2y-14l \(\ge\) 0 với mọi y
=> S= |x+3|+|2y-14|+2016 \(\ge\) 2016 với mọi x,y
dấu = xảy ra là giá trị nhỏ nhất của S đạt được khi và chỉ khi S=2016.
\(\Leftrightarrow\) lx+3l = 0 và l2y-14l = 0
\(\Leftrightarrow\) x+3=0 và 2y-14=0
\(\Leftrightarrow\)x=-3 và y=7
Vậy MinS=2016 \(\Leftrightarrow\) x=-3 và y=7
Do s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất nên:
x+3=0=>x=-3
2y-14=0=>y=7
Với giá trị nào của x; y thì biểu thức: A=lx- yl+l x+ 1l+ 2016 đạt giá trị nhỏ nhất. Tìm giá trị đó!
Vì |x-y|\(\ge\)0 với mọi x,y
|x+1|\(\ge\)0 Với mọi x
\(\Rightarrow\)|x-y|+|x+1|\(\ge\)0 Với mọi x,y
\(\Rightarrow\)|x-y|+|x+1|+2016\(\ge\)2016 với mọi x,y
\(\Rightarrow\)A\(\ge\)2016 với mọi x,y
Dấu '=' xảy ra\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\x=0-1=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}-1-y=0\\x=-1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=-1-0=-1\\x=-1\end{cases}}\)
Vậy Min A=2016\(\Leftrightarrow\)x=-1,y=-1
a, Ta có: (x - 1)2 \(\ge\)0 với mọi x
=> A = (x - 1)2 + 2016 \(\ge\)2016
Dấu "=" xảy ra <=> (x - 1)2 = 0 <=> x = 1
Vậy GTNN của A = 2016 tại x = 1
b, Ta có: \(\left|x+4\right|\ge0\)với mọi x
=> A = |x + 4| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4
Vậy GTNN của B = 2017 tại x = -4
Vì |x-y| ≥0 với mọi x,y;|x+1|≥0 vs mọi x=>A≥2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:{
|x−y|=0 |
|x+1|=0 |
⇔{
x−y=0 |
x+1=0 |
⇔{
x=y |
x=−1 |
vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016
\(S=\left|x+2\right|+\left|2y-10\right|+2016\)
\(S\ge2016\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Với giá trị nào của x,y thì biểu thức : A = \(|x-y|+|x+1|+2016\)đạt giá trị nhỏ nhất. Tìm giá trị đó
Ta có : \(\left|x+1\right|\ge0\forall x\)
Nên : |x + 1| nhỏ nhất bằng 0
<=> x + 1 = 0
=> x = -1
Lại có : \(\left|x-y\right|\ge0\forall x\)
Nên : |x - y| nhỏ nhất bằng 0
=> x - y = 0
mà x = -1
=> -1 - y = 0
=> y = -1
Vậy A = |x - y| + |x + 1| + 2016 nhwor nhất bằng 0 + 0 + 2016
=> A nhở nhất bằng 2016 khi x = y = -1
Ta có: |x-y| >=0 với mọi x,y
|x+1| >=0 với mọi x,y
=> |x-y|+|x+1|+2016 >=2016 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
M nhỏ nhất <=> \(\frac{1321}{997-a}\) lớn nhất <=> 997-a bé nhất khác 0 và không âm
Mà a là số tự nhiên => 997-a=1 => a=998