Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\left( {13x{\rm{ }}-{\rm{ }}{{12}^2}} \right):{\rm{ }}5{\rm{ }} = {\rm{ }}5\\13x{\rm{ }}-{\rm{ }}{12^2} = 5.5\\13x{\rm{ }}-{\rm{ }}144 = 25\\13x = 25 + 144\\13x = 169\\x = 13\end{array}\)
Vậy \(x = 13\)
b)
\(\begin{array}{l}3x\left[ {{8^2} - 2.\left( {{2^5} - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.\left( {32 - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.31} \right]{\rm{ }} = {\rm{ }}2022\\3x\left( {64 - 62} \right){\rm{ }} = {\rm{ }}2022\\3x.2 = 2022\\6x = 2022\\x = 337\end{array}\)
Vậy \(x = 337.\)
A, ( 13x - 12^2 ) : 5 = 5
=> 13x - 144 = 25
=> 13x = 163
=> 13x = 13 . 13
=> x = 13
B, 3x [ 8^2 - 2 ( 2^5 - 1 ) ] = 2022
3x [ 64 - 2 . 31 ] = 2022
3x . 2 = 2022
3x = 1011
x = 337
HỌC TỐT
Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)
\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)
THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.
Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1
$\Rightarrow x=0$
Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$
Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:
$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại)
Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:
$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2
$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)
Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:
$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)
Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:
$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1
$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$
$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.
Vậy $(x,y)=(0,0)$
làm ơn giúp mình với mình cần gấp lắm, ai làm sớm nhất, hay nhất mình k cho
(13x-122):5=5
13x-122 = 5 . 5
13x-122 = 25
13x = 25 + 122
13x = 169
x = 169 : 13
x = 13
Vậy x = 13
3x[82-2.(25-1) ]=2022
3x [ 82-2.31 ]= 2022
3x [64 -62 ] = 2022
3x . 2 = 2022
3x = 2022 : 2
3x = 1011
x = 1011 : 3
x = 337
Vậy x = 337