Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1(phần a):
Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Lời gải:
Theo đề ra ta có:
$x-1\vdots 4; x-2\vdots 5; x-3\vdots 6$
$\Rightarrow x-1+4\vdots 4; x-2+5\vdots 5; x-3+6\vdots 6$
$\Rightarrow x+3\vdots 4, 5, 6$
$\Rightarrow x+3=BC(4,5,6)$
Để $x$ nhỏ nhất thì $x+3$ cũng phải nhỏ nhất.
$\Rightarrow x+3=BCNN(4,5,6)$
$\Rightarrow x+3=60$
$\Rightarrow x=57$
gọi số cần tìm là x ta có:
x:5(dư3)
x:7(dư4)
x:9(dư5)
suy ra : 2x+1 thuộc BCNN(5;7;9)=315
2x+1=315
2x=315-1
2x=314
x=314:2
x=157
(li-ke ủng hộ tớ nha)