Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x chia hết cho 12;18;27. Nên x thuộc BC(12;18;27)=(108,216,324,432,540,...)
Vì 500<x<600. Nên x=540
a. Ta có :
40 = 2^3*5
60 = 2^2*3*5
=> UCLN (40;60 ) = 2^2*5 = 20
=> UC(40;60) = U(20 ) = { 0;20;40 ;60;80;...}
b. Vì x chia hết cho 10;12;15
=> x \(\in\) BC (10;12;15)
Ta có :
10 = 2*5
12 = 2^2*3
15 = 3*5
=> BCNN (10;12;15) = 2^2*3*5 = 60
=> BC (10;12;15) = B (60 ) = { 0;60;120;180;240;...}
Vì 100<x<150
Nên x = 120
c. Vì 480 chia hết cho x , 600 chia hết cho x và x lớn nhất nên
x là UCLN (480;600 )
Ta có :
480 = 2^5*3*5
600 = 2^3*3*5^2
=> UCLN (480 ; 600 ) = 2^3*3*5 = 120
Vậy x = 120
d. Vì x chia hết cho 12,25,30
Nên x \(\in\) BC (12;25;30)
Ta có :
12 = 2^2*3
25 = 5^2
30 = 2*3*5
=> BCNN (12;25;30) = 2^2*3*5^2=300
=> BC (12;25;30) = B(300) = { 0;300;600;...}
Vì 0<x<500
Nên x = 300
Ta có :
x chia hết cho 42
x chia hết cho 36
Từ đó ta suy ra và phân tích :
\(42=2.3.7\)
\(36=2^2.3^2\)
\(BCNN\left(36;42\right)=2^2.3^2.7=252\)
\(BC\left(252\right)=\left\{504;756;1008\right\}\)
Theo đề bài x sẽ lớn hơn 500 và bé hơn 1000
Vậy thỏa mãn 504 và 756
Ta có :
x chia hết cho 36
x chia hết cho 30
x chia hết cho 15
Suy ra x là BCNN của 30 ;15;36 :
Ta phân tích :
\(30=2^2.3.5\)
\(15=3.5\)
\(36=2^2.3^2\)
\(BCNN\left(30;15;36\right)=2^2.3^2.5=180\)
Theo đề bài x bé hơn hoặc bằng 600
Ta có :
\(BC\left(180\right)=\left\{360;540;720\right\}\)
Vậy x = 540 ; 360
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
a) Do x chia hết cho 40 và chia hết cho 50 nên:
\(x\in BC\left(40,50\right)\)
Ta có:
\(B\left(40\right)=\left\{0;40;80;120;160;200;240;280;320;360;400;440;480;520;..\right\}\)
\(B\left(50\right)=\left\{0;50;100;150;200;250;300;350;400;450;500;550...\right\}\)
\(\Rightarrow BC\left(40,50\right)=\left\{0;200;400;600;...\right\}\)
Mà: \(x< 500\)
\(\Rightarrow x\in\left\{0;200;400\right\}\)
b) A chia hết cho 140 và A chia hết cho 350 nên:
\(\Rightarrow A\in BC\left(140,350\right)\)
Ta có:
\(B\left(140\right)=\left\{0;140;280;420;560;700;840;980;1120;1260;1400;1540\right\}\)
\(B\left(350\right)=\left\{0;350;700;1050;1400;1750;...\right\}\)
\(\Rightarrow BC\left(140;350\right)=\left\{0;700;1400;...\right\}\)
Mà: \(1200< A< 1500\)
\(\Rightarrow A\in\left\{1400\right\}\)
\(BC\left(30,45\right)=B\left(90\right)=\left\{0;90;180;270;360;450;540;...\right\}\\ \Leftrightarrow x\in\left\{0;90;180;270;360;450\right\}\)
BCNN(12,30,36) = 3^2*2^2*5 = 180
500 < x < 600 và x thuộc B(180)
=> x = 540
có thể phân tích các số ra giùm được ko