\(\frac{3n+2}{2n-1}\)là số tự nhiên 

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Để \(\frac{3n+2}{2n-1}\)là số tự nhiên

=> 3n + 2 chia hết cho 2n - 1

=> 6n + 4 chia hết cho 2n - 1

=> 6n - 3 + 7 chia hết cho 2n - 1

=> 3(2n-1) + 7 chia hết cho 2n - 1

=> 7 chia hết cho 2n - 1

=> 2n - 1 \(\in\)Ư(7) = {1;-1;7;-7}

=> n \(\in\){1;0;4;-3}

Thử lại n = 1 thỏa mãn

Vậy n = 1

27 tháng 4 2018

để n là số tự nhiên thì n phải là ƯC(3,2)

nên n có thể  bằng 6,12,18,24...

26 tháng 3 2018

Đề bài sai nha!

\(B=\frac{4n+2}{n+2}=\frac{4n+8-6}{n+2}\)

\(=4-\frac{6}{n+2}\)

Để B là stn thì 6/n+2 là stn.

=> 6 chia hết cho n+2

=> n+2 thuộc Ư(6)

 ......................(tự làm nhé)...........................

2 tháng 12 2017

Ta có : \(\frac{3n+5}{n+1}=\frac{3n+3+2}{n+1}=1+\frac{2}{n+1}\)

Vậy để Biểu thức trên có giá trị là một số tự nhiên

\(\Rightarrow n+1\inƯ\left(2\right)=\left(1;2\right)\)

\(\Rightarrow n\in\left(0;1\right)\)

30 tháng 3 2017

Số n là :

1 + 0 = 1

Đáp số : 1

2 tháng 10 2016

n = 1 và n =2

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên