K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

Tim so tu nhien nho nhat chia het cho 5 roi them vao mot don vi xet co chia het cho 5 du 1  chia 7 du 4 neu khong phai so do thi tiep so chia het cho 5  la 10 them mot don vi la 11 chia 5 du chia 7 du 4

10 tháng 11 2021

fhrecvhhhfdvbnt

10 tháng 11 2021
16:3,23:5,40:7
DD
14 tháng 6 2021

Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).

suy ra \(n+1\in BC\left(2,3,4,5\right)\)

Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).

\(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).

- \(n+1=120\Leftrightarrow n=119⋮7\).​

Vậy giá trị nhỏ nhất của \(n\)là \(119\).

27 tháng 6 2017

  Gọi số cần tìm là a 
Do a chia 5 dư 1 nên a-1 chia hết cho 5 
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5 
=> a+9 chia hết cho 5 (1) 
Do a chia 7 dư 5 nên a-5 chia hết cho 7 
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7 
=> a+9 chia hết cho 7 (2) 
Từ (1) và (2) suy ra a+9 là bội của 5 và 7 
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35 
=> a = 26 
Vậy số phải tìm là 26 

27 tháng 6 2017

  Gọi số cần tìm là a 
Do a chia 5 dư 1 nên a-1 chia hết cho 5 
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5 
=> a+9 chia hết cho 5 (1) 
Do a chia 7 dư 5 nên a-5 chia hết cho 7 
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7 
=> a+9 chia hết cho 7 (2) 
Từ (1) và (2) suy ra a+9 là bội của 5 và 7 
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35 
=> a = 26 
Vậy số phải tìm là 26 

 ủng hộ mình nha

27 tháng 10 2017

Gọi số đó là A. (AN*)

Vì A chia cho 5 dư 1 ,chia cho 7 dư 5 nên ta có:

A=5k+1

  =7h+5         (k;h N*)

=> A+9=5k+1+9=5k+10=5.(k+2)

            =7h+5+9=7h+14=7.(h+2)

=> A+9 chia hết cho 5 và 7

=> A+9= BCNN(5;7)

Mà ƯCLN(5;7)=1 nên BCNN(5;7)=5.7=35

=> A+9=35

=> A=35-9=26

 
27 tháng 10 2017

Số đó là: 26

Vì:

26 : 5 = 5 ( dư 1 )

26 : 7 = 3 ( dư 5 )

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$

$a-4\vdots 5\Rightarrow a+1\vdots 5$

$a-5\vdots 6\Rightarrow a+1\vdots 6$

Tức là $a+1$ là bội chung của $4,5,6$

$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$

$\Rightarrow a+1\vdots 60$

Đặt $a=60k-1$ với $k$ là số tự nhiên

$a\vdots 7$ tức là $60k-1\vdots 7$

$\Leftrightarrow 60k-1-56k\vdots 7$

$\Leftrightarrow 4k-1\vdots 7$

$\Leftrightarrow 4k-8\vdots 7$

$\Leftrightarrow 4(k-2)\vdots 7$

$\Leftrightarrow k-2\vdots 7$

Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$

$\Rightarrow a=60k-1=60.2-1=119$

 

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301