Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm một số biết rằng khi chia số đó cho 64 và 67 thì thu được cùng số thương còn số dư lần lượt là 38 và 14. Số cần tìm là 550
Câu hỏi 10:
Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 thì dư 5, còn khi chia cho 31 thì dư 28. Số cần tìm là 121
gọi: số cần tim là x
thương của x chia cho 64 va 67 là a
theo giả thiết ta có:
x = 64a+38
và x= 67a+18
<=>64a+38=67a+14
<=>(-3)a=(-24)
<=>a=8
vậy số cần tìm là x=64x8+38=550
câu 10
Ban goi so can tim la a.
Vi a chia cho 29 du 5 nen a co dang: a = 29k + 5 ( k la so tu nhien )
lai co a chia 31 du 28 nen a - 28 chia het cho 31
suy ra : 29k - 23 chia het cho 31
=> 31k -31 -2k +8 chia het cho 31
=> 2k - 8 chia het cho 31
=> k - 4 chia het cho 31
ma a nho nhat nen k nho nhat. Vay k =4 hay a= 29.4 + 5 =121
**** bn
Gọi số tự nhiên nhỏ nhất cần tìm là a
Do a chia 29 dư 5; chia 31 dư 28
=> a = 29.m + 5 = 31.n + 28 \(\left(m;n\in N\right)\)
=> 29.m = 31.n + 23
=> 29.m = 29.n + 2.n + 23
=> 29.m - 29.n = 2.n + 23
=> 29.(m - n) = 2.n + 23
\(\Rightarrow2.n+23⋮29\)
Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất
Mà 2.n + 23 là số lẻ => 2.n + 23 = 29
=> 2.n = 29 - 23
=> 2.n = 6
=> n = 6 : 2 = 3
=> a = 31.3 + 28 = 121
Vậy số nhỏ nhất cần tìm là 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p \(\in\) N)
Tương tự: A = 31q + 28 (q \(\in\) N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q \(\ge\) 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 93 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p \(\in\) N )
Tương tự: A = 31q + 28 ( q \(\in\) N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ
=>p – q \(\ge\)1
Theo giả thiết A nhỏ nhất
=> q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1
=> 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
nho **** T_T
Gọi số cần tìm là a.
Vì a chia cho 29 dư 5 nên a có dạng : a = 29k + 5 ( k là số tự nhiên )
Lại có a chia 31 dư 28 nên a - 28 chia het cho 31
=> 29k - 23 chia hết cho 31
=> 31k -31 - 2k +8 chia hết cho 31
=> 2k - 8 chia hết cho 31
=> k - 4 chia hết cho 31
Mà a là số tự nhiên nhỏ nhất nên k cũng là số nhỏ nhất . Vậy k = 4 hay a = 29.4 + 5 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p \(\in\) N )
Tương tự: A = 31q + 28 ( q \(\in\) N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
cho số tự nhiên a,biết rằng khi chia acho 15 thì ta được số dư gấp 8 lần thương. Ta có a=......
giả sử số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài
Số tự nhiên A chia cho 29 dư 5 nghĩa là : A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N )
Nên : 31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
Vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 Vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại :121 = 31 . 3 + 28 thỏa mãn đề bài
Lời giải:
Gọi số tự nhiên cần tìm là a.
Số a chia cho 31 dư 28 nên a=31k+28, với k∈N.
Lại có, số a chia cho 29 dư 5 nên a−5 chia hết cho 29.
Hay 31k+28−5 chia hết cho 29.
Mà 31k+28−5=29k+2k+23. Nên suy ra 2k+23 chia hết cho 29. Do đó, 2k+23=29t, với t∈N∗.
Suy ra k=29t−23 : 2, với t∈N∗.
Vì k∈N nên29t−23 chia hết cho 2.
Mà 29,23 là các số lẻ nên để 29t−23 chia hết cho 2 thì t phải là số lẻ.
Số tự nhiên a nhỏ nhất khi k nhỏ nhất, k nhỏ nhất khi t nhỏ nhất, t nhỏ nhất mà t∈N∗ và t là số lẻ thì t=1.
Khi đó, k=29.1−23 : 2=3 và a=31.k+28=31.3+28=121.
Đáp số: a=121.
Tìm số tự nhiên nhỏ nhất sao cho khi chia nó cho 29 31 được dư lần lượt là 5 28