K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Gọi số tự nhiên đó là a (\(a\in N\))

Vì a chia cho 4,5,6,9 đều dư 1 nên a + 1 chia hết cho 4,5,6,9 

Mà a là số tự nhiên nhỏ nhất nên \(a+1\in BCNN\left(4,5,6,9\right)\)

Mà \(BCNN\left(4,5,6,9\right)=180\)nên \(a+1=180\Rightarrow a=179\)

Vậy số cần tìm là 179

9 tháng 11 2017

Gọi số đó là a ( a thuộc N )

Có a : 4;5;6;9 đều dư 1 nên a-1 chia hết cho 4;5;6;9

Mà a nhỏ nhất nên a-1 nhỏ nhất

=> a-1 là BCNN của (4;5;6;9)

=> a-1 = 180

=> a=181

Vậy số tự nhiên đó là 181

30 tháng 7 2023

1, Gọi số đó là :a

=>a-3⋮4,6,8

=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)

=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)

Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.

5 tháng 4

Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...

hehe

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

28 tháng 2 2015

nhầm, bằng 192 đấy

 

28 tháng 2 2015

gọi số đó là a

vì a chia 3,4,5,6 đều dư 12

=>(a-12) chia hết 3,4,5,6

=>(a-12) thuộc BC(3,4,5,6)

3=3 ; 4=2^2 ; 5=5 ; 6=2*3

BCNN(3,4,5,6) = 2^2*3*5 =60

BC(3,4,5,6)=B(60)= {0;60;120;180;...}

vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất

từ tập hợp trên => (a-12)=180 =>a=192

thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^

20 tháng 11 2017

Ta gọi A là số cần tìm

A : 2,3,4,5 và 6 dư 1

Suy ra A+1 chia hết cho 2,3,4,5 và 6

Suy ra A+1 thuộc BC(2,3,4,5,6)

2=2

3=3

4=22

6=2x3

Suy ra BCNN(2,3,4,5,60=22 x3=12

Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12

Suy ra A+1 thuộc 1,12,24,36

Ta có bảng sau:

                            A+1                                       1                                                             12                                                               24                                                                36                       
                               A                                         0            11             23

            35                      


VÌ A chia hết cho 7 nên A sẽ bằng 35
 

20 tháng 11 2017

                                                                       Giải

Gọi số tự nhiên đó là :a

Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>

Ta có: 2=2

          3=3

           2=2.2

          5=5

          6=2.3

suy ra BCNN<2,3,4,5,6>=2.2.3.5=60

suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)

suy ra a=(1,61,121,181,241,301,...)

Mặt khác a chia hết  cho 7suy ra=241

Vậy số tự nhiên nhỏ nhất cần tìm là:241

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng

$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên 

$n=60k+2$

$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$

$\Leftrightarrow 60k-1\vdots 7$

$\Leftrightarrow 63k-(60k-1)\vdots 7$

$\Leftrightarrow 3k+1\vdots 7$

$\Leftrightarrow 3k-6\vdots 7$

$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.

Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$

Vì $t\geq 0$ nên $n\geq 122$

Vậy số tự nhiên nhỏ nhất thỏa đề là $122$

8 tháng 5 2016
gọi số cần tìm là a.theo bài ra ta có:a chia 3;4;5;6 dư 1=>a-1 chia hết cho 3;4;5;6=>a-1 chia hết cho 60=>a-1 thuộc {0;60;120;180;240;300;...}=>a thuộc {1;61;121;181;241;301;...}vì a chia hết cho 7=>a=301vậy a=301 
27 tháng 3 2018

Gọi số tự nhiên đó là a 

ta có : a-2 chia hết cho 3;4;5;6

           a-2 thuộc BC (3;4;5;6)

            BC(3;4;5;6) = (60;120;...)

            a = (62;122;...)

  => a nhỏ nhất mà chia cho 7 dư 3 nên a =122