Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
Ta gọi A là số cần tìm
A : 2,3,4,5 và 6 dư 1
Suy ra A+1 chia hết cho 2,3,4,5 và 6
Suy ra A+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
6=2x3
Suy ra BCNN(2,3,4,5,60=22 x3=12
Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12
Suy ra A+1 thuộc 1,12,24,36
Ta có bảng sau:
A+1 | 1 | 12 | 24 | 36 |
A | 0 | 11 | 23 | 35 |
VÌ A chia hết cho 7 nên A sẽ bằng 35
Giải
Gọi số tự nhiên đó là :a
Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>
Ta có: 2=2
3=3
2=2.2
5=5
6=2.3
suy ra BCNN<2,3,4,5,6>=2.2.3.5=60
suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)
suy ra a=(1,61,121,181,241,301,...)
Mặt khác a chia hết cho 7suy ra=241
Vậy số tự nhiên nhỏ nhất cần tìm là:241
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$
Gọi số tự nhiên đó là a (\(a\in N\))
Vì a chia cho 4,5,6,9 đều dư 1 nên a + 1 chia hết cho 4,5,6,9
Mà a là số tự nhiên nhỏ nhất nên \(a+1\in BCNN\left(4,5,6,9\right)\)
Mà \(BCNN\left(4,5,6,9\right)=180\)nên \(a+1=180\Rightarrow a=179\)
Vậy số cần tìm là 179
Gọi số đó là a ( a thuộc N )
Có a : 4;5;6;9 đều dư 1 nên a-1 chia hết cho 4;5;6;9
Mà a nhỏ nhất nên a-1 nhỏ nhất
=> a-1 là BCNN của (4;5;6;9)
=> a-1 = 180
=> a=181
Vậy số tự nhiên đó là 181