K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Theo bài ra, ta có:

n nhỏ nhất => n + 5 nhỏ nhất

n chia 11 dư 6 => n + 5 chia hết cho 11

n chia 17 dư 12 => n + 5 chia hết cho 17

n chia 29 dư 24 => n + 5 chia hết cho 29

Từ 4 điều trên => n + 5 = BCNN(11; 17; 29)

Ta thấy UCLN(11; 17; 29) = 1 => BCNN(11; 17; 29) = 11.17.29 = 5423

=> n + 5 = 5423

=> n = 5423 - 5

=> n = 5418

DD
22 tháng 10 2021

a) \(2^n+22\)

Với \(n\ge1\)thì \(2^n⋮2,22⋮2\)khi đó \(2^n+22⋮2\)mà \(2^n+22>2\)nên khi đó \(2^n+22\)là hợp số. 

Với \(n=0\)\(2^n+22=23\)thỏa mãn. 

Vậy \(n=0\).

b) \(13n\)

Với \(n\ge2\)thì \(13n⋮13\)mà \(13n>13\)nên là số hợp số. 

\(n=1\)thỏa mãn. 

14 tháng 2 2016

Thu voi n=1;2;3;4 ta chon n=1;3

Voi n >4 => 1!+2!+3!1!+2!+3!+...+n!=1!+2!+3!+4!+5!+...+n!=33+A0¯1!+2!+3!+...+n!=1!+2!+3!+4!+5!+...+n!=33+A0¯(vi 5!;6!;... co tan cung la 0) hay tong nay co tan cung la 3 => Tong nay khong phai là so chinh phuong vi khong co so chinh phuong nao co tan cung la 3 => loai
Vay n=1;3

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

thắng mô ở trường mà k bt hậy

24 tháng 1 2016

Ko có,họ giải sai,còn cái kia mi ko vào được

9 tháng 1 2017

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

9 tháng 1 2017

cảm ơn bạn nhiều !!

13 tháng 11 2015

Gọi Stn nhỏ nhất cần tìm là a

a : 6 dư 2

=> a= 6.q1+2

a : 7 dư 3

=> a= 7.q2+3

a : 9 dư 5

=> a= 9.q3+5

=> a+4 chia hết cho 6,7,9

Mà a nhỏ nhất 

=> a+4 nhỏ nhất

=> a +4 thuộc BCNN(6,7,9)

6=2.3

7=7 

9=33

BCNN(6,7,9) :2. 33.7 = 126

a+4 =126

a=126-4

a=122

=> a = 122

=> Số cần tìm là 122

P/S : Thuộc là dấu thuộc nhé bạn vì ở đây k có dấu ấy nên mình mới viết thế :>

27 tháng 1 2020

gọi sct là a(đk)

a chia 17 dư 5=> a-5 chia hết 17=>3a-15 chia hết 17=> 3a-15+17 =3a+2 chia hết 17

a chia 19 dư 12=>a-12 chia hết 19=>3a-36 chia hết 19=>3a-36+38=3a+2 chia hết 19

=> 3a+2 chia hết 323(do (17,19)=1)

để a min => 3a+2=323(do 323 chia 3 dư 2)

=>a=107

Vậy..