K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

a: \(\Leftrightarrow2n-1\in\left\{-1;1;3\right\}\)

hay \(n\in\left\{0;1;2\right\}\)

20 tháng 12 2021

câu b nữa bạn

19 tháng 12 2021

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2\right\}\)

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

2 tháng 10 2021

a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;4\right\}\)

b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)

\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;3\right\}\)

2 tháng 11 2023

Để n + 6 ⋮ n + 1 thì :

⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1

    Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)

⇒ Ư(5)={ 1;5 } 

n + 1 = 1 ⇒ n = 0

n + 1 = 5 ⇒ n = 4

   Vậy .............

25 tháng 12 2020

Ta có: n+3 chia hết cho n-1

mà: n-1 chia hết cho n-1

suy ra:[(n+3)-(n-1)]chia hết cho n-1

              (n+3-n+1)chia hết cho n-1

                        4    chia hết cho n-1

                  suy ra n-1 thuộc Ư(4)

           Ư(4)={1;2;4}

suy ra n-1 thuộc {1;2;4}

Ta có bảng sau:

n-1          1             2           4

n              2             3           5

    Vậy n=2 hoặc n=3 hoặc n=5 

 

25 tháng 12 2020

cảm ơn bạn nhaok

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

4 tháng 12 2023

thiếu bài 16

 

28 tháng 10 2021

a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;4\right\}\)

b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)

\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;3\right\}\)

a: \(n\in\left\{1;7\right\}\)

b: \(n-1\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{0;2;8\right\}\)

c: \(2n-1\in\left\{-1;1;7\right\}\)

\(\Leftrightarrow2n\in\left\{0;2;8\right\}\)

hay \(n\in\left\{0;1;4\right\}\)

7 tháng 10 2021

d ??

24 tháng 9 2021

\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)

a) Ta có:\(n-6⋮n-1\)

\(\Leftrightarrow n-1-5⋮n-1\)

mà \(n-1⋮n-1\)

nên \(-5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(-5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

Vậy: \(n\in\left\{2;0;6;-4\right\}\)

b) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

mà \(3n-3⋮n-1\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

Vậy: \(n\in\left\{2;0;6;-4\right\}\)

c) Ta có: \(n^2+5⋮n+1\)

\(\Leftrightarrow n^2+2n+1-2n+4⋮n+1\)

\(\Leftrightarrow\left(n+1\right)^2-2n-2+6⋮n+1\)

mà \(\left(n+1\right)^2⋮n+1\)

và \(-2n-2⋮n+1\)

nên \(6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

24 tháng 1 2021

Sao cho gì bạn