Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3n+1\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(3n-6+7\right)⋮\left(n-2\right)\)
\(\Rightarrow7⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\text{Mà }x\inℕ\Leftrightarrow x\in\left\{1;3;9\right\}\)
\(a,3n-5⋮n+1\)
\(< =>3.\left(n+1\right)-8⋮n+1\)
\(< =>8⋮n+1\)
\(< =>n+1\inƯ\left(8\right)\)
Nên ta có bảng sau :
n+1 | 1 | 8 | -1 | -8 | 2 | 4 | -4 | -2 |
n | 0 | 7 | -2 | -9 | 1 | 3 | -5 | -3 |
Vậy ...
Ta có 3n-5=3(n+1)-8
Để 3n-5 chia hết cho n+1 thì 3(n+1)-8 chia hết cho n+1
Vì 3(n+1) chia hết cho n+1
=> -8 chia hết cho n+1
n nguyên => n+1 nguyên
=> n+1 thuộc Ư (-8)={1;2;4;8}
Nếu n+1=1 => n=0
Nếu n+1=2 => n=1
Nếu n+1=4 => n=3
Nếu n+1=8 => n=7
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
a)38-3n chia hết cho n
=>38 chia hết cho n hay n thuộc Ư(38)={1;2;19;38}
b)n+5 chia hết cho n+1
=>n+1+4 chia hết cho n+1
=>4 chia hết cho n+1 hay n+1 thuộc Ư(4)={1;2;4}
=>n thuộc{0;1;3}
c)3n+4 chia hết cho n-1
3(n-1)+7chia hết cho n-1
=>7 chia hết cho n-1 hay n-1 thuộc Ư(7)={1;7}
=> n thuộc{2;8}
d)3n+2 chia hết cho n-1
3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1 hay n-1 thuộc Ư(5)={1;5}
=>n thuộc{2;6}
có j ko hiểu hỏi mk
a. Ta có: n + 3 ... n - 1
=> n - 1 + 4 ... n - 1
Vì n - 1... n - 1 => 4 ... n - 1 => n - 1 là ước của 4 => n - 1 thuộc (1; 2; 4) =>n thuộc (2; 3; 5)
b. Ta có: 3n - 5 ... n - 1
=>3n - 3 - 2 ... n - 1
=>3(n - 1) - 2 ... n - 1
Vì n - 1 ... n - 1 => 3(n - 1) ... n - 1 => 2 ... n - 1 => n - 1 là ước của 2 => n - 1 thuộc (1; 2) => n thuộc (2; 3)
*dấu"..." là nghĩa là chia hết cho
\(3n+10⋮n+2\)
=>\(3n+6+4⋮n+2\)
=>\(n+2\inƯ\left(4\right)\)
=>\(n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
Trả lời:
ĐK:\(n\in N\)
\(3n+1\)\(⋮\)\(n+2\)
\(\Rightarrow3(n+2)-5\)\(⋮\)\(n+2\)
Mà \(3(n+2)\)\(⋮\)\(n+2\)
\(\Rightarrow\)\(5\)\(⋮\)\(n+2\)
\(\Rightarrow n+2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{-1;3;-3;-7\right\}\)
Mà \(n\in N\)
\(\Rightarrow n=3\)
Vậy \(n=3\)