Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Theo bài ra ta có:
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Theo đề bài ta có
n=8q+7
n=31p+28
=>8q+7=31p+28=>31p+21=8q=>7p+21 chia hết cho 8=>32p+16+5-p chia hết cho 8
=>5-p chia hết cho 8=>5-p=8k(k là số tự nhiên)=> p=5-8k
Để a là số lớn nhất thì p là số lớn nhất suy ra k là số tự nhiên nhỏ nhất suy ra k=0 suy ra p=5
Vậy số phải tìm là a=31.5+28=183
Hoặc Gọi số cần tìm là n=abc, điều kiện abc≤999
Gọi lần lượt thương a, b
n=8x+7 <=> max x≤122
n=31y+28 <=> max yx≤31
8x+7=31y+28
8x=31y+21
x=(31y+21)/8
y=5 <=> x=22 , n=183
y=13 <=> x=53, n=431
y=21 <=> x=24, n=679
y=29 <=> x=115, n=927
Đáp số:
927
gọi số tự nhiên cần tìm là n ( n thuộc N ; n nhỏ hơn hoặc = 999)
n chia 8 dư 7 => ( n+1 ) chia hết cho 8
n chia 31 dư 28 => ( n+3) chia hết cho 31
ta có ( n+1 ) + 64 chia hết cho 8 = ( n+3 ) + 62 chia hết cho 31
vậy ( n+65 )chia hết cho 31 và 8
mà 31,8 = 1
=> n+65 chia hết cho 248
vì n nhỏ hơ hoặc = 999 nên ( n+65 ) nhỏ hơn hoặc = 1064
để n là số tự nhiên lớn nhát thỏa mãn điều kiện thì cũng phải là stn lớn nhất thỏa mãn => n+65 / 248 = 4
=.> n= 927
vậy số tự nhiên cần tìm là 927
ta co n=8k + 7
n+ 65 = 8k + 7+65 = 8k+72 = 8(k+9)
n= 31l+28
n+65 = 31l+28+65 = 31l + 93 = 31(k+3)
do do n+65 chia het cho 8 va 31
suy ra n+65 thuoc 248, 496, 744, 992,...
vi n lon nhat co 3 chu so nen n+65 = 992
suy ra n= 992-65 = 927
Có \(\overline{abcd}=1000a+100b+10c+d\)
\(=\left(1000+100+10+1\right)\left(a+b+c+d\right)\)
\(=1111.\left(a+b+c+d\right)\)
Do \(1111⋮11\)
\(\Rightarrow1111.\left(a+b+c+d\right)⋮11\)
\(\Rightarrow\overline{abcd}⋮11\)
Bài vô lí quá bn.
Ví dụ: 1112:11=101(dư 1) (ko chia hết cho 6)
Mk nghĩ bài này phải thêm đk j nx.
Xem lại đi nhá
n + 1 \(⋮\)8
\(\Rightarrow\)n + 1 + 64 = n + 65 \(⋮\)8 ( 1 )
n + 3 \(⋮\)31
\(\Rightarrow\)n + 3 + 62 = n + 65 \(⋮\)31 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)n + 65 \(⋮\)BCNN ( 8,13 ) = 248
\(\Rightarrow\)n = 248k - 65
với k = 3 thì n = 679
với k = 4 thì n = 927
với k = 5 thì n = 1175
Mà n là số lớn nhất có ba chữ số nên ta chọn n = 927
n + 1 ⋮⋮8
⇒⇒n + 1 + 64 = n + 65 ⋮⋮8 ( 1 )
n + 3 ⋮⋮31
⇒⇒n + 3 + 62 = n + 65 ⋮⋮31 ( 2 )
Từ ( 1 ) và ( 2 ) ⇒⇒n + 65 ⋮⋮BCNN ( 8,13 ) = 248
⇒⇒n = 248k - 65
với k = 3 thì n = 679
với k = 4 thì n = 927
với k = 5 thì n = 1175
Mà n là số lớn nhất có ba chữ số=> n = 927
theo đề bài n + 1 chia hết cho 8
=> n + 1 thuộc { 104;...;992}
n chia 31 dư 28 => n+1 chia 31 dư 29
thử lại => n + 1 lớn nhất = 928
vậy n = 927