Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 3n+2 và 4n+3
Theo đề bài ta có:
\(\hept{\begin{cases}3n+2⋮d\\4n+3⋮d\end{cases}}=>\hept{\begin{cases}4\left(3n+2\right)⋮d\\3\left(4n+3\right)d\end{cases}}\)
\(=>4\left(3n+2\right)-3\left(4n+3\right)⋮d\)
\(=>12n+8-12n-9⋮d\)
\(=>1⋮d=>d=1\)
Vì d=1 nên \(ƯCLN\)\(\left(3n+2,4n+3\right)=1\)
Vậy \(\frac{3n+2}{4n+3}\) là phân số tối giản
k mik đi
Gọi ƯCLN \(\frac{3n+2}{4n+3}\)là d, ta có :
3n + 2 \(⋮\)d → 12n + 8 \(⋮\)d ( nhân 3n + 2 với 4 )
4n + 3 \(⋮\)d → 12n + 9 \(⋮\)d ( nhân 4n + 3 với 3 )
→ ( 12n + 9 ) - ( 12n + 8 ) \(⋮\)d
( 12 n - 12n ) + ( 9 - 8 ) \(⋮\)d
1 \(⋮\)d → d \(\in\)Ư ( 1 ) = 1. Vì các số tối giản có ước là 1 và chính nó.
Vậy ........................
Gọi ƯCLN( n^2 + 4 ; n^2 + 5 ) = d ( d là số tự nhiên )
Suy ra : \(n^2+4⋮d\)
\(n^2+5⋮d\)
Nên \(\left(n^2+5\right)-\left(n^2+4\right)=1\)
\(\Rightarrow1⋮d\)\(\Leftrightarrow d=\left\{1;-1\right\}\)
Vậy phân số trên luôn là phân số tối giản nên không có n thỏa mãn A không tối giản
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản
Gọi d là ƯCLN của 2n+3 và 2n2+4n+1,\(d\in N\ne0\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\left(1\right)\\2n^2+4n+1⋮d\left(2\right)\end{cases}\Rightarrow\hept{\begin{cases}\left(2n+3\right)^2⋮d\\2\left(2n^2+4n+1\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}4n^2+12n+9⋮d\\4n^2+8n+2⋮d\end{cases}}\)
\(\Rightarrow4n^2+12n+9-4n^2-8n-2⋮d\)
\(\Rightarrow4n+7⋮d\left(1\right)\)
Từ\(2n+3⋮d\)\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\left(2\right)\)
Từ (1) và (2) \(\Rightarrow4n+7-4n-6⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
Ta có:
\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=1+\frac{15}{n-2}\)
Để \(\frac{n+13}{n-2}\) tối giản thì \(\frac{15}{n-2}\) tối giản
Mà \(15\) chia hết cho \(3\) và chia hết cho \(5\) nên \(n-2\) không chia hết cho \(3\) và không chia hết cho \(5\)
\(\Rightarrow n-2\ne3k\) \(\left(k\in N\right)\) và \(n-2\ne5p\) \(\left(p\in N\right)\)
\(\Leftrightarrow n\ne3k+2\) \(\left(k\in N\right)\) và \(\Leftrightarrow n\ne5k+2\) \(\left(p\in N\right)\)
Vậy, với \(n\ne3k+2\) \(\left(k\in N\right)\) và \(n\ne5k+2\) \(\left(p\in N\right)\) thì \(\frac{n+13}{n-2}\) tối giản