\(\frac{n+13}{n-2}\)

 

 GIẢI GIÚP M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

Ta có:

\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=1+\frac{15}{n-2}\)

Để   \(\frac{n+13}{n-2}\)  tối giản thì  \(\frac{15}{n-2}\)  tối giản

Mà  \(15\)  chia hết cho  \(3\)  và chia hết cho  \(5\)  nên  \(n-2\)  không chia hết cho  \(3\)  và không chia hết cho \(5\)

\(\Rightarrow n-2\ne3k\)  \(\left(k\in N\right)\) và   \(n-2\ne5p\)  \(\left(p\in N\right)\)

\(\Leftrightarrow n\ne3k+2\)  \(\left(k\in N\right)\)  và  \(\Leftrightarrow n\ne5k+2\)  \(\left(p\in N\right)\)

Vậy,  với   \(n\ne3k+2\)  \(\left(k\in N\right)\)  và  \(n\ne5k+2\)  \(\left(p\in N\right)\)  thì  \(\frac{n+13}{n-2}\)  tối giản

2 tháng 1 2016

tick tui lên 80 điểm hỏi đáp với thank nhiều

2 tháng 1 2016

Ai trình bày rõ hộ tui vs

22 tháng 6 2017

Gọi d là ƯCLN của 3n+2 và 4n+3

Theo đề bài ta có:

\(\hept{\begin{cases}3n+2⋮d\\4n+3⋮d\end{cases}}=>\hept{\begin{cases}4\left(3n+2\right)⋮d\\3\left(4n+3\right)d\end{cases}}\)

\(=>4\left(3n+2\right)-3\left(4n+3\right)⋮d\)

\(=>12n+8-12n-9⋮d\)

\(=>1⋮d=>d=1\)

Vì d=1 nên \(ƯCLN\)\(\left(3n+2,4n+3\right)=1\)

Vậy \(\frac{3n+2}{4n+3}\) là phân số tối giản

k mik đi

22 tháng 6 2017

Gọi ƯCLN \(\frac{3n+2}{4n+3}\)là d, ta có :

3n + 2 \(⋮\)d → 12n + 8 \(⋮\)d ( nhân 3n + 2 với 4 )

4n + 3 \(⋮\)d → 12n + 9 \(⋮\)d ( nhân 4n + 3 với 3 )

→ ( 12n + 9 ) - ( 12n + 8 ) \(⋮\)d

     ( 12 n - 12n ) + ( 9 - 8 ) \(⋮\)d

                                     1 \(⋮\)d → d \(\in\)Ư ( 1 ) = 1. Vì các số tối giản có ước là 1 và chính nó.

Vậy ........................

18 tháng 2 2019

sửa \(n^2+5\)thành \(n+5\)nha các bạn

10 tháng 2 2020

Gọi ƯCLN( n^2 + 4 ; n^2 + 5 ) = d ( d là số tự nhiên )

Suy ra : \(n^2+4⋮d\)

             \(n^2+5⋮d\)

Nên \(\left(n^2+5\right)-\left(n^2+4\right)=1\)

\(\Rightarrow1⋮d\)\(\Leftrightarrow d=\left\{1;-1\right\}\)

Vậy phân số trên luôn là phân số tối giản nên không có n thỏa mãn A không tối giản

22 tháng 11 2016

Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:

       n^3 + 2n chia hết cho d =>  n(n^3 + 2n) chia hết cho d =>   n^4 + 2n^2 chia hết cho d (1)

       n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d  => (n^2 + 1)^2  =  n^4 + 2n^2 + 1 chia hết cho d  (2)

 Từ (1) và (2) suy ra :     

                                               (n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d  =>  1 chia hết cho d => d=+-1

   Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1

22 tháng 11 2016

Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau . 

Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa . 

Vậy không thể rút gọn và phân số này đã tối giản

21 tháng 7 2017

Gọi d là ƯCLN của 2n+3 và 2n2+4n+1,\(d\in N\ne0\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\left(1\right)\\2n^2+4n+1⋮d\left(2\right)\end{cases}\Rightarrow\hept{\begin{cases}\left(2n+3\right)^2⋮d\\2\left(2n^2+4n+1\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}4n^2+12n+9⋮d\\4n^2+8n+2⋮d\end{cases}}\)

\(\Rightarrow4n^2+12n+9-4n^2-8n-2⋮d\)

\(\Rightarrow4n+7⋮d\left(1\right)\)

Từ\(2n+3⋮d\)\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4n+7-4n-6⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...