Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
refer\(mệt r chỉ muốn bài dễ thoi)
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
refer
hôm qua có r mà
https://hoc24.vn/cau-hoi/tim-so-tu-nhien-n-de-phan-so-7n-82n-3-co-gia-tri-lon-nhat.159546081385
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) =
= 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
Ta có: (7n-8) / (2n-3)=7/2 + (5) / (4n-6) . Suy ra để ( 7n - 8 ) / ( 2n - 3 ) có GTLN thì 4n-6 có giá trị dương nhỏ nhất . Suy ra: 4n-6=2 (vì n thuộc N) => n=2. =>GTLN cần tìm là 6. Xong he.he....
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) = 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)
Đặt \(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7.\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=7+\frac{5}{2n-3}\)
ĐỂ \(A_{Max}\Rightarrow2.A_{Max}\Rightarrow\left(\frac{5}{2n-3}\right)_{Max}\)
=>\(2n-3\)là số nguyên dương nhỏ nhỏ nhất co thể
\(\Rightarrow2n-3=1\Rightarrow n=2\)