Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
- Gọi số cần tìm là a
- Ta có a : 17 dư 8 => a - 8 chia hết cho 17 => a + 17 - 8 chia hết cho 17 => a + 9 chia hết cho 17
và a : 25 dư 16 => a - 16 chia hết cho 17 => a + 25 - 16 chia hết cho 25 => a + 9 chia hết cho 25
và => a+9 BC(17;25)
=> a + 9 B(425)
=> a + 9 { 0; 425; 950; 1375; 1800; ..... }
=> a { -9; 416; 941; 1366; 1791; ..... }
mà a là số tự nhiên có 3 chữ số
=> a { 416; 941 }
tick nhé xuân nguyễn
Ta gọi số cần tìm là a
Ta có:
a:17 dư 8=>a+9 chia hết cho 17
a:25 dư 16=>a+9 chia hết cho 25
=>a+9\(\varepsilon\)BC(17;25)
17=17
25=52
=>BCNN(17;25)=52.17=425
=>a+9\(\varepsilon\)BC(17;25)=B(425)={0;425;850;1275;...}
Vì a là số có ba chữ số
=>a={425;850}
tick nha
Câu 1:
Để phân số trên là số tự nhiên
=> 4n+13 chia hết cho n+2
=> 4n+8+5 chia hết cho n+2
=> 4(n+2)+5 chia hết cho n+2
Vì 4(n+2) chia hết cho n+2
=> 5 chia hết cho n+2
=> n+2 thuộc Ư(5)
=> n+2 thuộc {1; 5}
Mà n là số tự nhiên
=> n = 3
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
=> 2n+3 cà 4n+1 có ước chung là 1