K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

Đặt A = 2^8 + 2^11 + 2^n = (2^4)^2.(1 + 8 + 2^n-8) = (2^4)^2.(9 + 2^n-8) 
Để A là SCP thì (9 + 2^n-8) phải là SCP 
Đặt k^2 = 9 + 2^n-8 
=> k^2 - 3^2 = 2^n-8 
=> (k - 3)(k + 3) = 2^n-8 (*) 
Xét hiệu (k - 3) - (k + 3) = 6 
=> k - 3 và k + 3 là các lũy thừa của 2 và có hiệu là 6 
=> k + 3 = 8 và k - 3 = 2 
=> k = 5; thay vào (*) ta có: 2.3 = 2^n-8 
=> n = 12 
Thử lại ta có 2^8 + 2^11 + 2^12 = 80^2 (đúng)

                    Vậy số cần tìm là 12.

2 tháng 7 2015

ê đừng kêu gv olm chọn như vậy chứ ng ta muốn chọn lúc nào thì chọn

22 tháng 10 2014

khong ai biet ak ngu the

9 tháng 11 2014

Bài này không tìm được n đâu.

Giả sử n2+2002=k2(k>n)<=>2002=k2-n2=(k+n)(k-n). Vì 2002 chẵn nên ít nhất k+n hoặc k-n chẵn.

Mặc khác k+n+k-n=2k=>k+n và k-n cùng chẵn. Điều đó có nghĩa (k+n)(k-n) chia hết cho 4 nhưng 2002 không chia hết cho 4. Vậy ko tồn tại n.

26 tháng 11 2015

Ta có :

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

ko là số cp

 

3 tháng 12 2018

de bai minh gui hoi nham

phai la n^2+17 nhe

3 tháng 12 2018

Để P là số chính phương thì \(n^2+17\)có dạng \(k^2\)

\(\Rightarrow n^2+17=k^2\)

\(\Leftrightarrow17=k^2-n^2\)

\(\Leftrightarrow17=\left(k-n\right)\left(k+n\right)\)

Vì 17 là số nguyên tố nên nó chỉ có 2 ước là 1 và chính nó ( 17 ), tính cả các trường hợp âm là 4 trường hợp 

TH1: \(\hept{\begin{cases}k-n=1\\k+n=17\end{cases}\Rightarrow\hept{\begin{cases}k=9\\n=8\end{cases}}}\)

TH2: \(\hept{\begin{cases}k-n=17\\k+n=1\end{cases}\Rightarrow\hept{\begin{cases}k=9\\n=-8\end{cases}}}\)

TH3: \(\hept{\begin{cases}k-n=-1\\k+n=-17\end{cases}\Rightarrow\hept{\begin{cases}k=-9\\n=-8\end{cases}}}\)

TH4: \(\hept{\begin{cases}k-n=-17\\k+n=-1\end{cases}\Rightarrow\hept{\begin{cases}k=-9\\n=8\end{cases}}}\)

Vậy, ..... ( kết luận từng trường hợp )