Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 3A = 3/1.4 + 3/4.7 + ... + 3/(3n-2).(3n+1)
3A = 1-1/4 + 1/4 - 1/7 +....+ 1/(3n-2) - 1/(3n+1)
3A = 1- 1/(3n+1)
Mà 1/(3n+1) > 0 suy ra 3A < 1 suy ra A<1/3
tk giúp mình nha
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
=> 3x/4+3/4.7+3/7.10+...+3/100.103=306/103(nhân cả 2 vế của đt lên 2)
=>3x/4+(1/4-1/7)+(1/7-1/10)+...+(1/100-1/103)=306/103
=>3x/4+1/4-1/103+=306/103
=>3x/4+99/412=306/103
=>3x/4=306/103-99/412=1125/412
=>x=1125/412:3/4
=>x=1125/309
( nếu thấy đúng thì tick cho mk nha
a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1
=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)
Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)
\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)
Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)
Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)
..........................................
Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)
Cộng từng vế của 2 BĐT trên ta được
\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)
Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)
Đặt A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)
Ta có : A = \(\left(1+\frac{2}{4}\right).\left(1+\frac{2}{10}\right).\left(1+\frac{2}{18}\right).....\left(1+\frac{2}{n^2+3n}\right)\)
= \(\frac{6}{4}.\frac{12}{10}.\frac{20}{18}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)
= \(\frac{3.2}{4}.\frac{3.4}{2.5}.\frac{4.5}{3.6}.....\frac{\left(n+1\right).\left(n+2\right)}{n.\left(n+3\right)}\)
= \(\frac{3.2.3.4.4.5....n}{2.3.4.5.6.....\left(n+2\right)}\)
= \(\frac{3.\left(n+1\right)}{n+2}\)
Vậy A = \(\frac{3.\left(n+1\right)}{n+2}\)
xét \(VT=\frac{2}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+......+\frac{1}{2n.\left(2n+2\right)}\right)\) (1)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+.......+\frac{2}{2n\left(2n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.......+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{4}-\frac{1}{2\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}\)
mà theo bài ra (1) = \(\frac{502}{2009}\)
<=>\(\frac{1}{4}-\frac{1}{4n+4}=\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{4}-\frac{502}{2009}\)
<=>\(\frac{1}{4n+4}=\frac{1}{8036}\)
<=> 4n+4=8036
<=> 4n=8032
<=> n=2008
=) \(\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{502}{2009}\)
=) \(\frac{1}{2}-\frac{1}{2n+2}=\frac{502}{2009}:\frac{1}{2}=\frac{1018}{2009}\)
=) \(\frac{1}{2n+2}=\frac{1}{2}-\frac{1018}{2009}=\frac{-27}{4018}\)
=) \(\frac{-1}{-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(\frac{-27}{27.-\left(2n+2\right)}=\frac{-27}{4018}\)
=) \(27.-\left(2n+2\right)=4018\)
=) \(-\left(2n+2\right)=4018:27=\frac{4018}{27}\)
=) \(2n+2=\frac{-4018}{27}\)
=) \(2n=\frac{-4018}{27}-2=\frac{-4072}{27}\)
=) \(n=\frac{-4072}{27}:2=\frac{-2036}{27}\)
\(\)
a) \(\frac{\left(n+1\right)!}{n!\left(n+2\right)}=\frac{n!\left(n+1\right)}{n!\left(n+2\right)}=\frac{n+1}{n+2}\)
b)\(\frac{n!}{\left(n+1\right)!-n!}=\frac{n!}{n!\left(n+1\right)-n!}=\frac{n!}{n!\left(n+1-1\right)}=\frac{1}{n}\)
c)\(\frac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}=\frac{n!\left(n+1\right)-n!\left(n+1\right)\left(n+2\right)}{n!\left(n+1\right)+n!\left(n+1\right)\left(n+2\right)}=\frac{n!\left(n+1\right)\left(1-n-2\right)}{n!\left(n+1\right)\left(1+n+2\right)}=\frac{-n-1}{n+3}\)
( Kí hiệu n!=1.2.3.4...n)
1/
\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)
\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
Phương trình đã cho tương đương:
\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)
\(\Leftrightarrow503x=2012\)
\(\Leftrightarrow x=4\)
2/
\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)
\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)
3/
Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(=2.\frac{n+1}{n+2}
\(\frac{1}{1.3}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\right)=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}=\frac{2018}{6057}.3\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=\frac{1}{2019}\)
\(\Rightarrow n+3=2019\)
\(\Rightarrow n=2016\)
Vậy n = 2016