Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 0 => A = 1n + 2n + 3n + 4n = 4( loại )
Với n = 1 => A= 1n + 2n + 3n + 4n = 10 \(⋮\)5 ( t/m )
Với n \(\ge\)2
+) Nếu n là số chẵn => n = 2k ( k \(\in\)N)
=> A = 1 + 4k + 9k + 16k
Ta thấy : 4 chia 5 dư ( - 1 ) => 4k chia 5 dư ( -1 )k
: 9 chia 5 dư ( - 1 ) => 9k chia 5 dư ( - 1 )k
: 16 chia 5 dư 1 => 16k chia 5 dư 1
=> A chia 5 dư 1 + ( - 1 )k + ( - 1 )k + 1
Nếu k chẵn => A chia 5 dư 4 ( loại )
Nếu k lẻ => k = 2m + 1 ( m \(\in\)N )
=> A = 1 + 42m . 4 + 92m . 9 + 162m . 16
= 1 + 16m . 4 + 81m . 9 + 256m .16
Vì 16 ; 81 ; 256 chia 5 dư 1 => A chia 5 có số dư bằng ( 1 + 4 + 9 +16 ) cho 5 => A \(⋮\) 5
=> n = 2. ( 2m + 1 ) = 4m + 2 thì A \(⋮\)5
Nếu n lẻ => n = 2h + 1 ( h \(\in\)N
=> A = 1 + 4h . 2 + 9h . 3 + 16h . 4
=> A chia 5 dư 1 +( -1)h .2 + (-1)h . 3 + 4
Khi h lẻ để A \(⋮\)5 => n = 2. ( 2.i + 1 ) + 1 = 4.i + 3 ( i \(\in\)N )
\(\Leftrightarrow4< n< =6\)
hay \(n\in\left\{5;6\right\}\)
hay có 2 giá trị nguyên n thỏa mãn
Biểu thức: \(\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)\) (khoảng cách của 2 số tự nhiên lẻ liên tiếp là 2 đơn vị )
Với n=1000 \(\Rightarrow\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)=\left(2\cdot1000+1\right)\left(2\cdot1000+3\right)\left(2\cdot1000+5\right)=2001\cdot2003\cdot2005=8028022005\)
Biểu thức cần viết là (2n+1)(2n+3)(2n+5)(1)
Thay n=1000 vào biểu thức (1), ta được:
\(\left(2\cdot1000+1\right)\left(2\cdot1000+3\right)\left(2\cdot1000+5\right)\)
\(=2001\cdot2003\cdot2005\)
\(=8036046015\)
Vì n là số có 2 chữ số
→10≤n≤99→21≤2n+1≤199
Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}
Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Vì n là số có 2 chữ số
\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)
Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)
Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
n lẻ => biểu diễn n= 2k-1 (k là số tự nhiên). Khi đó
tổng số các số hạng = k
tổng các số tự nhiên lẻ từ 1 đến n là:
[1+3+5...+(2k-1)] = [1+(2k-1)] * k/2 = k2 = 10044004
k = 1001
n=2001
\(p=2a^{2n+1}+5a^{2n+1}-3a^{2n}-7a^{2n}+3a^{2n1}\)
\(p=\left(2a^{2n+1}+5a^{2n+1}+3a^{2n+1}\right)+\left(-3a^{2n}-7a^{2n}\right)\)
\(\Rightarrow P=10a^{2n+1}+\left(-10a\right)^{2n}\)
Mà \(2n⋮2\)còn \(2n+1⋮2̸\)
Do đó \(a>2\)thì\(P>0\)
cHÚC BẠN HỌC TÔT ~!!!
\(P=10a^{2n+1}-10a^{2n}>0\Leftrightarrow10a^{2n+1}>10a^{2n}\Leftrightarrow10a^{2n}.a>10a^{2n}\Leftrightarrow\hept{\begin{cases}a>0\\a>1\end{cases}\Leftrightarrow a>1}\)
2^n/32 = 4 => 2^n = 4 . 32 = 128 => n =7
27^n . 9^n = 9^27 . 81
=> (27.9)^n = 9^27 . 9^2
=> 243^n = 9^54
=> 243^n = 243^1458
vay n=1458
1/9 . 3^4 . 3^n+1 = 9^4
=> 9 . 3^n+1 = 6561
=> 3^n+1 = 6561 /9
=> 3^n+1 = 729
=> n = 5