Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n+2 chia hết cho n - 1
=> n-1 + 3 chia hết cho n -1
=> n - 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {2;0;4;-2}
b) n +4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
=> n + 1 thuộc Ư (3) = {1;-1;3;-3}
=> n = {0;-2;2;-4}
c) 2n + 7 chia hết cho n + 1
=> n + 1 + n + 1 + 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 = {1;-1;5;-5}
=> n = {0;-2;4;-6}
d) 2n + 1 chia hết cho n - 3
=> n - 3 + n - 3 - 5 chia hết cho n - 3
=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}
=> n = {4;2;8;-2}
a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1
Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
=> n={2;0;4;-2}
b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1
Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
n+1 | 1 | 3 | -1 | -3 |
n | 0 | 2 | -2 | -4 |
=> n={0;2;-2;-4}
c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1
Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
n+1 | 1 | 5 | -1 | -5 |
n | 0 | 4 | -2 | -6 |
=> n={0;4;-2;-6}
d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3
Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau:
n-3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |
=> n={4;10;2;-4}
Gì mak zài zữ zậy bạn
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
2:
a: 12 chia hết cho n
mà n là số tự nhiên
nên \(n\in\left\{1;2;3;4;6;12\right\}\)
b: 16 chia hết cho n-1
=>\(n-1\inƯ\left(16\right)\)
mà n-1>=-1(n là số tự nhiên nên n>=0)
nên \(n-1\in\left\{-1;1;2;4;8;16\right\}\)
=>\(n\in\left\{0;2;3;5;9;17\right\}\)
c: 9 chia hết cho n+1
=>\(n+1\inƯ\left(9\right)\)
mà n+1>=1(n>=0 do n là số tự nhiên)
nên \(n+1\in\left\{1;3;9\right\}\)
=>\(n\in\left\{0;2;8\right\}\)
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
d))Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
)Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội
a) Ta có: n + 6 \(⋮\)n
Do n \(⋮\)n => 6 \(⋮\)n
=> n \(\in\)Ư(6) = {1; 2; 3; 6}
b)Ta có: (n + 9) \(⋮\)(n + 1)
<=> [(n + 1) + 8] \(⋮\)(n + 1)
Do (n + 1) \(⋮\)(n + 1) => 8 \(⋮\)(n + 1)
=> (n + 1) \(\in\)Ư(8) = {1; 2; 4; 8}
=> n \(\in\){0; 1; 3; 7}
c) Ta có: n - 5 \(⋮\)n + 1
<=> (n + 1) - 6 \(⋮\)n + 1
Do (n + 1) \(⋮\)n + 1 => 6 \(⋮\)n + 1
=> n + 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> n \(\in\){0; 1; 2; 5}
d) Ta có: 2n + 7 \(⋮\)n - 2
=> 2(n- 2) + 11 \(⋮\)n - 2
Do 2(n - 2) \(⋮\)n - 2 => 11 \(⋮\)n - 2
=> n - 2 \(\in\)Ư(11) = {1; 11}
=> n \(\in\){3; 13}
a) n= 6
b) n= 1
d) n=1
Check lại nhé.