K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

TÍnh S=3/1.4+3/4.7+3?7>!0+...+3/n(n+3) với n là số tự nhiên . chứng minh S<1

9 tháng 4 2017

\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n.\left(n+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n.\left(n+1\right)}\)

9 tháng 4 2017

còn lại tự làm

6 tháng 4 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}...+\frac{1}{n.\left(n+1\right)}=\frac{2015}{2016}\)

\(\frac{1.2}{3.2}+\frac{1.2}{6.2}+\frac{1.2}{10.2}+...+\frac{1}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{1}{n.\left(n+1\right)}=\frac{2015}{2016}\)

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2015}{2016}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2015}{2016}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)

\(2.\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{2015}{2016}\)

\(\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{2016}:2\)

\(\frac{1}{2}-\frac{1}{n+1}=\frac{2015}{4032}\)

\(\frac{1}{n+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\frac{1}{n+1}=\frac{1}{4032}\)

\(\Rightarrow n+1=4032\)

\(\Rightarrow n=4031\)

27 tháng 1 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{2003}{2004}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Leftrightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}=\frac{1}{4008}\)

\(\Rightarrow n+1=4008\Rightarrow n=4007\)

Vậy \(n=4007\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2015}{2016}\)

\(\Leftrightarrow2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{2015}{2016}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{2015}{2016}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2015}{4032}\)

\(\Leftrightarrow\dfrac{1}{n+2}=\dfrac{1}{4032}\)

hay n=4030