Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
\(A=\frac{n^2+8}{n+8}=\frac{n^2+8n-8n-64+72}{n+8}=n-8+\frac{72}{n+8}\)
\(A\)là số tự nhiên suy ra \(\frac{72}{n+8}\)là số tự nhiên suy ra \(n+8\inƯ\left(72\right)\)mà \(n\inℕ\Rightarrow n+8\ge8\)
suy ra \(n+8\in\left\{8,9,12,18,24,36,72\right\}\Leftrightarrow n\in\left\{0,1,4,10,16,28,64\right\}\).
Thử lại ta đều thấy thỏa mãn.
Sửa lại một số chỗ :
Ta có:
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.
Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+100\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là số nguyên tố thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
ĐKXĐ : \(n+8\ne0\Rightarrow n\ne-8\)
Để \(\frac{n^2+8}{n+8}\)là số tự nhiên \(\Rightarrow\left(n^2+8\right)⋮\left(n+8\right)\)
Để \(\left(n^2+8\right)⋮\left(n+8\right)\)\(\Rightarrow n^2-n=0\)
\(\Leftrightarrow n\left(n-1\right)=0\Rightarrow n=0\)hoặc \(n-1=0\Leftrightarrow n=1\)( TM )
Tô Hoài An chỗ đặt tính chia bạn làm chưa đúng. Phải ra thương là (n-8), dư 72.
Ta có : n + 8 chia hết cho n + 3
Mà : n + 3 chia hết cho n + 3
=> ( n + 8 ) - ( n + 3 ) chia hết cho n + 3
=> n + 8 - n - 3 chia hết cho n + 3
=> 5 chia hết cho n + 3
Mà : n \(\ge\) 3
=> n + 3 = 5
=> n = 5 - 3
=> n = 2
Vậy n = 2
Vì \(n\in N\Leftrightarrow n+8\ge8\)
\(\dfrac{n^2+8}{n+8}=\dfrac{n^2-64+56}{n+8}=n-8+\dfrac{56}{n+8}\in Z\\ \Leftrightarrow n+8\inƯ\left(56\right)=\left\{8;14;28;56\right\}\\ \Leftrightarrow n\in\left\{0;6;20;48\right\}\)